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Abstract 

An	assessment	quantifying	the	impact	of	urbanization	on	temperature	trends	

from	the	U.S.	Historical	Climatology	Network	(USHCN)	is	described.		Stations	were	

first	classified	as	urban	and	non‐urban	(rural)	using	four	different	proxy	measures	

of	urbanity.		Trends	from	the	two	station	types	were	then	compared	using	a	pairing	

method	that	controls	for	differences	in	instrument	type	and	via	spatial	gridding	to	

account	for	the	uneven	distribution	of	stations.		The	comparisons	reveal	systematic	

differences	between	the	raw	(unadjusted)	urban	and	rural	temperature	trends	

throughout	the	USHCN	period	of	record	according	to	all	four	urban	classifications.		

Based	on	these	classifications,	urbanization	accounts	for	14%	to	21%	of	the	rise	in	

unadjusted	minimum	temperatures	since	1895	and	6%	to	9%	since	1960.		The	

USHCN‐Version	2	homogenization	process	effectively	removes	this	urban	signal	

such	that	it	becomes	insignificant	during	the	last	50‐80	years.		In	contrast,	prior	to	

1930,	only	about	half	of	the	urban	signal	is	removed.		Accordingly,	the	NASA	

Goddard	Institute	for	Space	Studies	urban‐correction	procedure	has	essentially	no	

impact	on	USHCN	version	2	trends	since	1930,	but	effectively	removes	the	residual	

urban‐rural	temperature	trend	differences	for	years	before	1930	according	to	all	

four	urban	proxy	classifications.		Finally,	an	evaluation	of	the	homogenization	of	

USHCN	temperature	series	using	subsets	of	rural‐only	and	urban‐only	reference	

series	from	the	larger	U.S.	Cooperative	Observer	(Coop)	Network	suggests	that	the	

composition	of	Coop	stations	surrounding	USHCN	stations	is	sufficiently	“rural”	to	

limit	the	aliasing	of	urban	heat	island	signals	onto	USHCN‐Version	2	temperature	

trends	during	homogenization.		  



1.	Introduction 

Urbanization	has	long	been	recognized	as	having	the	potential	to	impact	

near‐surface	temperature	readings	by	altering	the	sensible	and	latent	heat	fluxes	in	

affected	areas	[e.g.,	Mitchell,	1953;	Oke,	1982;	Arnfield,	2003].		The	concentration	of	

high	thermal	mass	impermeable	surfaces	in	urbanized	regions	commonly	leads	to	

higher	surface	temperatures	compared	to	those	in	less	developed	or	rural	areas,	

especially	at	night	[Oke,	1982;	Parker,	2010].		To	mitigate	the	potential	for	an	urban	

bias	in	temperature	records	used	for	climate	monitoring,	stations	that	comprise	the	

U.S.	Historical	Climatology	Network	(USHCN)	were	selected	to	be	largely	from	rural	

or	small	town	locations	[Quinlan	et	al.,	1987;	Menne	et	al.,	2009].		Still,	station	

locations	tend	to	be	correlated	with	inhabited	areas.		Relative	to	the	percentage	of	

total	land	area	that	is	built	up,	“urban”	observation	stations	are	likely	

overrepresented	in	general,	even	in	networks	like	the	USHCN.		 

Given	the	potential	for	urban	biases,	a	number	of	studies	have	been	

undertaken	to	quantify	the	impact	of	the	“urban	heat	island”	(UHI)	signal	on	land	

surface	air	temperature	trends	globally	(e.g.,	Peterson	et	al.	1999;	Parker,	2006;	

Jones	et	al.,	2008;	Hansen	et	al.,	2010)	and	regionally	within	the	USA	(e.g.,	Kukla	et	

al.,	1986;	Karl	et	al.,	1988;	Gallo	et	al.,	1999,	Gallo	and	Owen,	2002;	Peterson,	2003;	

Peterson	and	Owen,	2005).		Unfortunately,	quantifying	the	impact	of	urbanization	on	

temperature	trends	faces	multiple	confounding	factors.		For	example,	an	instrument	

originally	installed	in	an	urban	environment	may	well	have	warmer	absolute	

temperatures	than	one	in	a	nearby	rural	area,	ceteris	paribus,	but	will	not	

necessarily	show	a	higher	trend	over	time	unless	the	composition	of	the	city	or	the	



microclimate	around	the	sensor	changes	in	such	a	way	to	cause	the	city	

observations	to	further	diverge	from	temperatures	at	nearby	rural	locations	[Jones	

and	Lister,	2010],	or	the	nature	of	urban	land	use	leads	to	an	amplifying	of	warm	

events	whose	frequency	may	change	with	time	[McCarthy	et	al.,	2010].		It	follows	

that	urban	heat	island	effects	will	lead	to	larger	temperature	trends	compared	to	

rural	areas	only	if	UHI‐related	factors	cause	incremental	increases	over	rural	

temperatures	during	the	period	over	which	the	trend	is	calculated	[Boehm,	1998].		

Moreover,	cooling	biases	can	be	introduced	into	the	temperature	record	when	

stations	move	from	city	centers	to	more	rural	areas	on	the	urban	periphery.		This	

may	have	occurred,	for	example,	during	the	period	between	about	1940	and	1960	

when	stations	were	moved	from	urban	centers	to	newly	constructed	airports	

[Hansen	et	al.,	2001]	and,	in	the	case	of	the	USHCN,	airports,	waste	water	treatment	

plants	and	other	locations	that	lie	outside	the	urban	core	[National	Climatic	Data	

Center,	2012].		Conversely,	an	instrument	that	is	constructed	in	a	relatively	rural	

area	that	becomes	more	urban	over	time	may	exhibit	a	warming	bias,	and	stations	

in	small	towns	are	not	necessarily	free	of	urban	influences.		 

To	further	complicate	matters,	changes	associated	with	urbanization	may	

have	impacts	that	affect	both	the	meso‐scale	(102‐104	meters)	and	the	micro‐scale	

(100‐102	meters)	signals.		Small	station	moves	(e.g.,	closer	to	nearby	parking	

lots/buildings	or	to	an	area	that	favors	cold	air	drainage)	as	well	as	local	changes	

such	as	the	growth	of	or	removal	of	trees	near	the	sensor	may	overwhelm	any	

background	UHI	signal	at	the	meso‐scale	[Boehm,	1998].		Notably,	when	stations	are	

located	in	park‐like	settings	within	a	city,	the	microclimate	of	the	park	can	be	



isolated	from	the	urban	heat	island	“bubble”	of	surrounding	built	up	areas	

[Spronken‐Smith	and	Oke,	1998;	Peterson,	2003].			Further,	changes	in	observation	

practice	such	as	time	of	observation	and	instrument	changes	may	lead	to	artifacts	

(inhomogeneities)	in	the	data	record	that	complicate	the	quantification	of	urban	

heat	island	signals	[Peterson,	2003],	especially	if	these	changes	are	correlated	with	

urban	form.		 

Here,	an	analysis	is	described	whose	aim	is	to	quantify	the	potential	UHI	

contribution	to	U.S.	temperature	trends	by	more	fully	controlling	for	external	

factors	that	impact	the	trends	but	are	otherwise	unrelated	to	urbanization.		A	range	

of	estimates	for	the	UHI	contribution	to	average	U.S.	temperature	trends	is	provided	

by	making	use	of	four	separate	ways	to	differentiate	urban	and	rural	station	

environments	to	help	assess	uncertainty	associated	with	identifying	urban	

environments.		The	impact	of	data	homogenization	on	the	UHI	signal	is	also	

evaluated.		Homogenization	is	necessary	to	account	for	shifts	in	the	station‐based	

data	caused	by	historical	changes	in	the	circumstances	behind	surface	temperature	

measurement	(e.g.,	changes	in	instrument	type,	station	relocations)	rather	than	by	

true	changes	in	the	climate.		The	artifacts	caused	by	these	kinds	of	changes	have	

large,	systematic	impacts	on	U.S.	temperature	trends	[Menne	et	al.	2009;	Williams	et	

al.	2012].		Consequently,	homogenized	datasets	are	essential	for	evaluating	

temperature	changes	from	the	observational	record	[Venema	et	al.	2012;	Lawrimore	

et	al.,	2011;	Hansen	et	al.	2010;	Vose	et	al.,	in	press].		Benchmarking	the	approach	to	

homogenizing	the	U.S.	monthly	temperature	data	has	essentially	reaffirmed	



previous	assessments	regarding	the	nature	and	impact	of	these	artifacts	on	USHCN	

temperature	trends	[Williams	et	al.	2012]	.		 

Homogenization	of	the	USHCN	monthly	version	2	temperature	data	does	not	

specifically	target	changes	associated	with	urbanization.		Rather,	the	procedure	

used		involves	identifying	and	accounting	for	shifts	in	the	monthly	temperature	

series	that	appear	to	be	unique	to	a	specific	station‐‐the	assumption	being	that	a	

spatially	isolated	and	sustain	shift	in	a	station	series	is	caused	by	factors	unrelated	

to	background	climate	variations	[Menne	et	al.	2010].		Given	that	UHI‐related	

changes	may	manifest	as	highly	localized	shifts	or	creeping	changes,	the	focus	in	this	

analysis	is	to	determine	to	what	extent	homogenization	is	removing	apparent,	local	

urban	influences	on	the	USHCN	temperature	record.		Because	homogenization	may	

be	removing	local	shifts	caused	by	land	use	changes	at	non‐urban	stations,	the	same	

methodology	used	here	could	be	applied	to	evaluating	the	impact	of	other	types	of	

land	use	changes.			 

The	paper	is	organized	as	follows.		Some	additional	background	and	

motivation	for	the	study	are	provided	in	section	2.		The	datasets	and	methods	are	

discussed	in	section	3.		Results	are	presented	in	section	4.		Conclusions	are	provided	

in	section	5. 

 

2.	Background	and	motivation	 

Motivation	for	assessing	urban	influences	on	temperature	trends	comes	

largely	from	interest	in	quantifying	the	contribution	of	urbanization	in	overall	

temperature	trends	relative	to	other	factors.		To	that	end,	measures	of	ambient	



population	[Kukla	et	al.,	1986]	and	satellite‐derived	nightlights	[Gallo	et	al.,	1999]	

have	been	used	to	differentiate	urban	and	rural	environments.		Using	these	

measures,	monthly	temperatures	from	U.S.	weather	stations	designated	as	urban	

have	been	found	to	have	decadal	trends	as	much	as	0.12°C/decade	higher	than	

those	classified	as	rural	[Kukla	et	al.	1986].		Because	differences	of	this	magnitude	

represent	a	non‐negligible	fraction	of	the	likely	background	climate	change	signal,	

Karl	et	al.	[1988]	developed	a	specific	adjustment	to	control	for	the	apparent	

contribution	of	the	urban	heat	island	signal	in	USHCN	temperature	data.		After	

adjusting	for	shifts	in	the	data	associated	with	time	of	observation	and	other	

changes	documented	in	station	histories,	the	Karl	et	al.	[1988]	evaluation	suggested	

that	an	additional	urban	bias	was	present	in	the	USHCN	average	temperature	of	

about	0.06°C	during	the	period	from	1900	to	1984.			Essentially	all	of	the	bias	was	

associated	minimum	temperatures	in	urban	areas,	which	were	about	0.13°C	higher	

on	average	than	rural	areas;	maximum	temperatures	appeared	to	have	little	urban	

bias. 

The	Karl	et	al.	[1988]	UHI	correction	was	used	to	produce	the	USHCN	

(version	1)	fully	adjusted	USHCN	monthly	temperature	data	until	the	release	of	

version	2	[Menne	et	al.	2009].		As	in	version	1,	the	version	2	release	includes	bias	

adjustments	for	time	of	observation	and	other	station	history	changes,	but	version	2	

also	includes	adjustments	for	changes	(inhomogeneities)	that	are	not	documented	

in	digital	station	histories	(roughly	50%	of	all	changes).		Providing	adjustments	for	

both	documented	and	undocumented	station	changes	reduced	the	overall	

magnitude	of	minimum	temperature	trends	from	USHCN	stations	more	than	the	



fully	adjusted	version	1	temperatures	even	though	version	1	contained	the	

additional	Karl	et	al.	[1988]	UHI	adjustment.		The	reason	for	this	may	be	that	the	

more	comprehensive	homogenization	in	version	2	removes	the	impact	of	

incremental,	but	previously	unidentified	step	changes	associated	with	meso	and	

micro‐scale	urbanization	factors,	or,	that	signal	arising	from	local	UHI	trend	changes	

are	sometimes	aliased	(i.e.,	inadvertently	accounted	for)	onto	estimates	of	the	more	

comprehensive	version	2	step‐type	adjustments	[Menne	et	al.	2009].		In	any	case,	

the	development	of	a	method	for	identifying	and	adjusting	undocumented	shifts		

appeared	to	account	for	more	than	of	the	signal	attributed	to	urban	effects	on	

minimum	temperatures	by	Karl	et	al.	[1988].		Thus,	no	separate	UHI‐specific	

correction	was	provided	in	USHCN	version	2.			 

Another	reason	that	the	Karl	et	al.	[1988]	corrections	were	not	used	in	

version	2	is	that	they	are	monotonic	functions	of	city	population;	that	is,	these	

adjustments	always	reduced	minimum	temperature	trends	based	on	the	total	

population	of	the	city.		In	contrast,	Hansen	et	al.	[1999,	2001,	2010]	have	used	a	

nightlights‐based	method	that	forces	urban	(and	“peri‐urban”)	station	trends	to	

conform	to	surrounding	rural	trends	in	the	NASA	Goddard	Institute	for	Space	

Studies	(GISS)	surface	temperature	analysis.		In	the	process,	the	Hansen	et	al.	

approach	actually	increases	the	trend	for	about	40%	of	urban	stations.		The	fact	that	

so	many	urban	trends	are	larger	after	the	urban	adjustment	likely	reflects	the	

degree	to	which	the	confounding	factors	discussed	above	can	mitigate	or	otherwise	

obscure	potential	urban	heat	island	signals.		 



For	the	U.S.	data	contribution	to	the	NASA	GISS	analysis,	Hansen	et	al.	[2001,	

2010]	use	the	USHCN	data	that	has	been	adjusted	by	NOAA/NCDC	for	time	of	

observation	and	station	history	changes,	but	apply	their	own	UHI	adjustment.		The	

GISS	urban	adjustment	reduced	the	otherwise	adjusted	USHCN	version	1	

temperature	trends	by	an	additional	0.15°C/century,	more	than	twice	that	of	Karl	et	

al.	[1988]	method	[Hansen	et	al.	2001]	even	though	the	NASA	GISS	UHI	corrections	

are	not	monotonic.		Using	the	USHCN	version	2	adjusted	data,	the	impact	of	the	GISS	

UHI	correction	is	on	the	order	of	0.07°C/century	[Hansen	et	al.	2010].		 

The	differential	impacts	of	these	approaches	to	assessing	and	correcting	for	

the	UHI	are	indicative	of	the	need	to	better	frame	the	uncertainty	of	urban	

influences	on	temperature	trends	in	the	U.S.		As	noted	more	recently	by	Peterson	

[2003]	and	Peterson	and	Owen	[2005],	this	requires	controlling	for	the	many	

confounding	issues	like	differences	in	instrumentation	and	other	observation	

practices	that	may	blur	the	urban	signal.		Whereas	Peterson	[2003]	and	Peterson	and	

Owen	[2005]	focused	primarily	on	a	snapshot	of	mean	urban‐rural	differences,	here	

we	build	on	their	work	by	looking	specifically	at	the	time	evolution	of	urban‐rural	

differences.			We	use	four	rather	than	two	proxy	measures	of	urbanity	and	quantify	

the	impact	of	data	homogenization	on	the	apparent	UHI	signal,	focusing	in	particular	

on	the	potential	magnitude	of	residual	UHI	contamination	and	whether	there	is	

evidence	that	homogenization	transfers	UHI	bias	from	urban	to	non‐urban	station	

series.		 

 

3.	Methods 



The	Conterminous	United	States	(CONUS)	has	some	of	the	most	dense,	

publicly	available	digital	surface	temperature	data	in	the	world	with	over	7000	

Cooperative	Observer	(Coop)	Network	Program	stations	reporting	daily	maximum	

and	minimum	temperature	for	at	least	10	of	the	network’s	120‐plus	year	history.			A	

subset	of	1218	stations,	generally	those	with	long	records,	comprises	the	USHCN	

[Menne	et	al.,	2009].	This	highly	sampled	surface	temperature	field	allows	for	the	

comparison	of	subsets	of	station	data	in	a	manner	that	avoids	inherent	biases	due	to	

changes	in	spatial	coverage.	The	Coop	Program	also	now	maintains	accurate	

geolocational	information	on	the	present	location	of	observing	stations,	with	

coordinates	expressed	in	degrees,	minutes	and	seconds	(roughly	30	meter	

accuracy)	available	for	most	stations.	This	also	allows	for	the	accurate	indexing	of	

current	Coop	station	locations	against	high‐resolution	georeferenced	datasets	that	

are	useful	to	delineating	urban	and	non‐urban	areas.		 

Because	there	is	not	an	obvious	meso‐scale	metric	that	determines	the	

impact	of	urban	form	on	temperature	in	all	situations,	we	examined	four	different	

measures	of	urbanity	that	are	available	as	georeferenced	datasets:	satellite‐derived	

nightlights,	urban	boundary	delineations,	percent	of	impermeable	surfaces,	and	

historical	population	growth	during	the	period	where	high‐resolution	data	is	

available	(1930	to	2000).		These	four	measures,	which	represent	different	snapshots	

of	urban	boundaries,	were	used	to	classify	a	station	as	urban	or	non‐urban	by	

retrieving	the	pixel	values	coincident	with	the	each	station’s	coordinates.		In	cases	

where	the	proxy	for	urban	form	involved	continuous	measurements	(all	but	urban	

boundaries),	a	cutoff	point	to	divide	stations	between	urban	and	rural	was	chosen	



based	on	urban	designations	present	in	the	literature	(e.g.	Hansen	et	al.,	2010	for	

nightlights;	Elvidge	et	al.	2007	for	impermeable	surface	area).		Each	of	these	proxies	

is	described	in	section	3.a.	below. 

 

3.a.	Datasets	used	to	classify	station	types 

Satellite	Nightlights 

Satellite‐derived	brightness	values	associated	with	the	COOP	Network	

stations	(including	the	USHCN)	were	taken	from	the	Global	Radiance	Calibrated	

Nighttime	Lights	dataset	produced	by	the	Earth	Observation	Group	using	

instruments	flown	on	Defense	Meteorological	Satellite	Program	(DMSP)	satellites.	

We	used	the	data	from	the	F16	satellite	recorded	between	2005‐11‐28	and	2006‐

12‐24.		The	values	we	associate	with	each	station	are	linearly	interpolated	from	the	

4	neighbor	pixels	in	the	image	file	and	are	converted	to	radiance	by	multiplying	by	

1.51586	×	10‐10	giving	a	result	in	Watts	sr‐1	cm‐2	[Baugh	et	al.,	2010].		To	determine	

a	radiance	value	threshold	for	designating	urban	stations	that	is	consistent	with	the	

32	microWatts/m2/sr/micrometer	used	in	Hansen	et	al.	[2010]	(who	used	data	from	

Imhoff	et	al.,	1997),	we	divided	radiance	values	by	the	optical	bandwidth	of	the	F16	

satellite	(0.7	micrometers),	resulting	in	a	cutoff	of	14.78	(i.e,	32	÷	0.7	×	1.51586)	as	

the	equivalent	value	for	the	2005‐2006	satellite	nightlight	series.	This	is	rounded	to	

the	nearest	integer	(15)	for	the	purpose	of	assigning	a	cutoff	to	separate	urban	from	

non‐urban	pixels. 

 

Urban	Boundaries	(GRUMP) 



For	the	urban	boundaries	urbanity	proxy,	we	use	binary	designations	from	

the	Global	Rural‐Urban	Mapping	Project	(GRUMP),	produced	by	the	Center	for	

International	Earth	Science	Information	Network	(CIESIN)	of	the	Earth	Institute	at	

Columbia	University.	GRUMP	designations	are	based	on	the	identification	of	urban	

areas	using	national	census	data	(including	the	National	Imagery	and	Mapping	

Agency	database	of	populated	places).		GRUMP	purports	to	identify	cities	and	towns	

with	populations	exceeding	1,000	residents.	Urban	boundaries	surrounding	

identified	cities	and	towns	are	estimated	based	on	DMSP	Operational	Linescan	

System	(OLS)	data	from	1994‐1995	as	well	as	data	from	the	Digital	Chart	of	the	

World’s	Populated	Places	(DCW)	[Balk	et	al.,	2004]. 

 

Impermeable	Surfaces 

The	Impervious	Surface	Area	(ISA)	for	pixels	coincident	with	Coop	stations	is	

taken	from	the	Global	Distribution	and	Density	of	Constructed	Impervious	Surfaces	

dataset	produced	by	the	Earth	Observation	Group.	The	1km	resolution	data	used	for	

this	study	was	derived	from	30‐meter	ISA	data	generated	by	the	US	Geological	

survey	as	described	in	Elvidge	et	al.	[2007].	The	data	product	has	a	nominal	date	of	

2000‐2001	and	represents	the	percentage	of	the	surface	area	that	is	comprised	of	

manmade	structures	such	as	roads,	buildings	and	parking	lots.		Station	latitude	and	

longitude	were	used	to	reference	the	dataset	and	extract	the	percentage	of	

impervious	surface	in	the	surrounding	1	km.	To	determine	the	urban/non‐urban	

classification	a	cut	off	of	ten	percent	was	employed.	As	noted	by	Schuler	[1994]	and	

Arnold	and	Gibbons	[1996],	the	impacts	to	hydrology	typically	begin	above	this	



figure.	ISA	values	below	ten	percent	were	classified	as	rural.	This	approach	is	

consistent	with	though	somewhat	more	conservative	than	the	recent	work	of	Potere	

et	al.	[2009],	who	used	a	figure	of	twenty	percent	for	detecting	urban	extent.	 

 

Population	Growth 

For	the	population	growth	proxy,	we	utilized	Gridded	1	km	Population	

Estimates	for	the	Conterminous	U.S.,	1930‐2000.	This	dataset	was	also	used	by	

Peterson	and	Owen	[2005]	and	Peterson	[2003]	to	classify	USHCN	stations	into	

urban	and	non‐urban	categories.	The	gridded	population	was	created	using	two	U.S.	

Census	Bureau	data	sets:	The	2000	U.S.	Census	Bureau	1	km2	population	density	

grid	for	CONUS	(National	Geophysical	Data	Center/NESDIS/NOAA,	2002)	and	tabular	

U.S.	Census	county	data	[U.S.	Census	Bureau,	2002].		Urban	sites	were	defined	as	

those	characterized	by	a	1930	to	2000	population	growth	of	greater	than	or	equal	to	

10	people	per	square	kilometer,	which	yields	similar	sized	numbers	of	urban	and	

non‐urban	stations	as	shown	in	Table	1.	While	there	is	no	available	justification	in	

the	literature	for	this	or	any	specific	1930‐2000	population	growth	cutoff	as	a	proxy	

for	urbanization,	this	value	was	chosen	to	be	reasonably	conservative	and	to	

produce	an	urban/rural	division	generally	in	line	with	the	other	urbanity	proxies.	As	

Table	1	indicates,	the	GRUMP,	Nightlights,	and	Population	Growth	urbanity	proxies	

result	in	a	relatively	even	distribution	of	stations	in	the	rural	and	urban	categories	

while	the	ISA	proxies	identifies	the	majority	of	stations	as	rural.		Information	on	

retrieving	these	datasets	are	provided	as	supplementary	information. 

 



Table	1:	Number	of	USHCN	stations	classified	by	urbanity	for	each	urbanity	proxy.	

Note	that	four	stations	could	not	be	classified	using	the	ISA	urbanity	proxy	due	to	

dataset	limitations. 

Proxy	Name 
Urban	

Boundaries 
Nightlights ISA Pop	Growth 

Rural	Stations 608 594 857 685 

Urban	

Stations 
610 624 357 533 

 

 

3.b.	Calculation	of	rural	and	urban	temperature	trend	differences 

Urban‐rural	temperature	differences	were	calculated	by	sub‐setting	the	

USHCN	station	data	according	to	the	urban/non‐urban	station	classifications	

described	above	(for	simplicity	non‐urban	stations	are	referred	to	as	rural).	To	

examine	the	possible	UHI	signal	present	in	the	USHCN	temperature	record,	we	use	

two	different	but	complimentary	methods	to	compare	urban	and	rural	station	

temperatures:	station	pairing	and	spatial	gridding.	 

 

Station	Pairing	Method 

The	station	pairing	method	creates	pairs	of	nearby	urban	and	non‐urban	

(rural)	stations	as	classified	by	the	four	urban	proxy	measures.		Pairs	were	created	

by	forming	all	possible	permutations	of	urban	and	rural	stations,	excluding	those	

that	were	more	than	161	kilometers	(100	miles)	apart;	that	had	differing	or	



unknown	sensor	equipment	types	(e.g.	Maximum	Minimum	Temperature	Sensors	

[MMTS]	versus	Liquid	in	Glass	Thermometers	in	Cotton	Region	Shelters	[CRS]);	or	

cases	in	which	both	stations	currently	have	MMTS	sensors	but	installation	dates	

differ	by	more	than	5	years.	This	pairing	method	yields	a	set	of	proximate	

urban/rural	station	pairs	for	each	classification	method	that	should	be	relatively	

unaffected	by	bias	introduced	through	sensor‐type	transitions	[Quayle	et	al.,	1991;	

Menne	et	al.,	2009].		Time	series	of	monthly	maximum	and	minimum	temperature	

anomalies	relative	to	a	1961‐1990	baseline	were	calculated	for	all	urban	and	rural	

series.		Difference	series	for	each	urban	and	rural	station	pairings	were	then	created	

for	the	full	period	of	the	USHCN	version	2	records	(1895	to	present).	 

More	specifically,	the	approach	in	the	station	pairing	method	was	to	take	all	

permutations	of	urban	and	rural	stations	and	produce	a	set	containing	unique	pairs	

but	non‐unique	occurrences	of	individual	urban	and	rural	station	series	(see	Table	

2).	For	example,	a	specific	urban	station	would	create	distinct	pairs	with	all	

surrounding	rural	stations	within	100	kilometers	with	the	same	instrumentation	

type.	To	avoid	overweighting	regions	with	large	numbers	of	adjacent	urban	and	

rural	stations	(and	thus	disproportionately	more	possible	station	pair	

combinations)	we	weight	the	urban‐rural	differences	by	the	inverse	of	the	number	

of	stations	pairs	associated	with	each	unique	urban	station.	The	mean	urban‐rural	

differences	for	unique	urban	stations	are	averaged	for	each	month	to	obtain	a	best	

estimate	of	the	underlying	urban‐rural	temperature	differences.	 

 



Table	2:	Number	of	total	urban/rural	station	pairs	and	unique	urban	stations	

by	urbanity	proxy. 

Proxy	Name 
Urban	

Boundaries 
Nightlights ISA Pop	Growth 

Total	Station	

Pairs 
1684 1809 1446 1392 

Unique	Urban	

Stations 
437 470 271 390 

 
 

The	trend	and	confidence	intervals	for	two	periods,	1895‐2010	and	1960‐

2010,	are	calculated	from	the	station	pair	data	using	a	weighted	regression	with	

clustered	standard	errors,	with	unique	urban	stations	used	for	both	the	weighting	

and	clustering.	Standard	errors	are	clustered	by	unique	urban	station	because	

station	pairs	contain	non‐unique	occurrences	of	individual	urban	and	rural	stations	

(e.g.	a	single	urban	station	might	be	paired	with	four	different	rural	stations),	and	

treating	each	station	pair	as	independent	would	result	in	erroneously	narrow	

confidence	intervals.	As	mentioned	previously,	each	urban‐rural	pair	is	given	a	

weight	in	the	regression	proportionate	to	the	inverse	of	the	number	of	station	pairs	

that	share	the	same	urban	station.	 

The	station	pairing	method	allows	us	to	control	for	both	spatial	coverage	and	

sensor	type,	avoiding	potential	complications	introduced	by	differing	locations	of	

urban	and	rural	stations	as	well	as	urban‐correlated	bias	in	the	transition	to	MMTS	

sensors	in	the	1980s.	The	results	will	not	necessarily	be	as	representative	of	the	



entire	CONUS	temperature	field	as	those	produced	by	spatial	gridding,	however,	as	

station	pairing	does	not	explicitly	weight	based	on	spatial	coverage. 

 

Spatial	Gridding	Method 

The	spatial	gridding	method	is	used	to	create	separate	gridded	fields	for	the	

conterminous	U.S.	using	the	subsets	of	urban	and	rural	station	series	(and	

separately	for	maximum	and	minimum	temperatures)	as	classified	by	each	urban	

proxy	measure.	Station	temperatures	are	converted	to	anomalies	relative	to	a	1961‐

1990	baseline	period,	and	station	series	that	fall	within	2.5°	latitude	x	3.5°	longitude	

grid	cells	are	averaged	together	and	each	grid	cell	average	is	cosine	weighted	to	

produce	a	CONUS	average	time	series.	The	CONUS	average	urban	and	rural	station	

series	are	then	differenced.	Trends	and	confidence	intervals	for	the	urban‐rural	

differences	during	the	1895‐2010	and	1960‐2010	periods	are	calculated	by	

regressing	against	the	date	using	an	AR(1)	model	to	account	for	autocorrelation. 

The	gridding	method	described	above	is	commonly	used	by	NOAA/NCDC	to	

produce	spatially	averaged	time	series	for	climate	monitoring.		In	addition	to	this	

method,	results	using	the	gridding	method	described	in	Menne	et	al.	[2009;	2010]	

are	provided	as	supplementary	information.	 

 

3.c.	USHCN	version	2	monthly	temperature	data	 

Urban‐rural	differences	for	mean	monthly	maximum	and	minimum	

temperatures	were	calculated	using	four	different	versions	of	the	USHCN	version	2	

monthly	temperature	data.		The	four	versions	were	used	to	help	quantify	the	



magnitude	of	the	UHI	in	the	underlying	raw	(unhomogenized)	data,	to	isolate	the	

impact	of	data	homogenization	on	the	UHI	signal,	and	to	evaluate	impact	of	the	GISS	

UHI	correction	when	applied	as	an	addition	correction	over	and	above	

homogenization.		The	dataset	versions	include 

1 time	of	observation‐only	adjusted	data	(called	TOB);	 

2 adjusted	version	2	(TOB	+	pairwise	homogenization	adjustments;	v2);	 

3 adjusted	version	2	data	produced	by	running	the	pairwise	homogenization	

algorithm	using	(a)	neighboring	series	classified	only	as	rural	(v2‐rural	

neigh);	and,	(b)	neighboring	series	classified	only	as	urban	(v2‐urban	neigh). 

4 adjusted	version	2	data	with	the	GISS	UHI	correction	(TOB	+	pairwise	

homogenization	+	GISS	UHI	adjustments;	v2+step2) 

 

Each	of	these	variants	is	described	below. 

 

Time	of	Observation	Bias‐Adjusted	data	(TOB) 

The	TOB	station	series	are	the	raw	monthly	temperature	data	adjusted	only	

for	the	time‐of‐observation	bias	[Schaal	and	Dale,	1977;	Karl	et	al.,	1986].	The	time	

of	observation	bias	is	an	artifact	of	the	starting/ending	hour	for	the	24‐hour	interval	

over	which	the	maximum	and	minimum	temperature	occurred.		This	bias	is	

unrelated	to	any	physical	artifacts	associated	with	urbanization	and	only	leads	to	

biased	trends	when	the	time	of	observation	changes	through	time.		However,	such	

changes	are	likely	more	prevalent	at	rural	stations,	which	are	commonly	run	by	

volunteer	observers	who	have	been	systematically	transitioning	from	afternoon	to	



morning	observation	times	[Menne	et	al.,	2009].		In	order	to	remove	the	time	of	

observation	bias	as	a	confounding	factor	in	assessing	UHI	impacts,	we	use	data	

adjusted	according	the	method	described	by	Karl	et	al.	[1986]	and	Vose	et	al.	[2003].	

Results	using	completely	unadjusted	(raw)	data	are	provided	as	supplementary	

information	using	the	Menne	et	al.	[2009;	2010]	gridding	method.	 

 

Data	adjusted	by	the	Pairwise	Homogenization	Algorithm	(USHCN	version	2) 

Running	the	TOB‐adjusted	data	through	the	Pairwise	Homogenization	

Algorithm	(PHA;	Menne	and	Williams,	2009)	produces	the	USHCN	version	2	fully	

adjusted	data	[Menne	et	al.,	2009].		The	PHA	works	by	identifying	and	removing	

abrupt	shifts	in	monthly	temperature	series	that	appear	to	be	unique	to	a	particular	

station.		The	shifts	can	be	caused	by	small	station	moves,	a	change	in	

instrumentation,	or,	possibly,	from	the	local	impacts	of	any	kind	of	land	use	change.		

The	shifts	are	identified	via	automated	pairwise	comparisons	of	monthly	

temperature	series	in	which	the	relative	homogeneity	of	a	given	station’s	series	is	

evaluated	by	looking	for	breaks	in	differences	series	formed	between	the	target	

station	and	a	number	of	highly	correlated	neighboring	series.		The	adjustments	are	

based	on	the	median	shift	magnitude	calculated	from	pairwise	temperature	

differences	between	the	target	and	neighbors	before	and	after	the	shift.		For	any	

particular	target	adjustment,	the	neighbor	pool	is	drawn	from	those	that	appear	to	

be	homogeneous	according	to	the	PHA	for	a	minimum	period	(24	months)	before	

and	after	the	target	shift.	The	PHA	does	not	specifically	target	urban	station	changes.		

Rather,	the	algorithm	targets	all	shifts	that	appear	to	be	unique	to	a	particular	



station.		Removing	these	local	signals	at	all	stations	(rural	and	urban	alike)	produces	

temperature	trend	fields	that	more	accurately	reflect	the	general	background	

climate	signal	than	the	raw	data. 

For	version	2,	USHCN	monthly	temperatures	were	compared	to	sets	of	highly	

correlated	neighboring	series	within	the	larger	Coop	Network.		Details	regarding	the	

mechanics	of	the	PHA	and	evaluations	of	the	algorithm’s	efficiency	can	be	found	in	

Menne	and	Williams	[2009]	and	Williams	et	al.	[2012a].			Version	2.0	of	the	adjusted	

monthly	data	was	released	in	2008	based	on	PHA	version	“52d”.		Urban‐rural	

differences	in	version	2.0	adjusted	data	are	discussed	below.		An	evaluation	of	the	

UHI	signal	in	a	new	version	of	the	dataset—termed	version	2.5—is	provided	as	

supplementary	information	using	the	Menne	et	al.	[2009,	2010]	gridding	method.		

Version	2.5	fully	homogenized	data	are	produced	by	algorithm	version	“52i”,	which	

contains	some	bug	fixes	relative	to	version	52d	[Williams	et	al.,	2012b].			 

To	evaluate	the	potential	for	UHI	bias	to	be	transferred	from	urban	Coop	

stations	that	may	be	used	as	neighbors	in	the	homogenization	of	USHCN	station	

records,	we	also	ran	the	USHCN	station	series	through	the	PHA	using	only	Coop	

stations	that	were	classified	as	rural	in	one	case	and	using	only	stations	classified	as	

urban	in	the	other	according	to	the	same	set	of	four	urban	proxies.	 

 

Version	2	homogenized	data	with	the	additional	NASA/GISS	“GISTEMP”	UHI	

correction 

Finally,	we	apply	the	GISTEMP	urban	heat	island	adjustment	(described	

Hansen	et	al.,	2010)	to	the	version	2.0	series	to	see	how	it	addresses	any	remaining	



urban‐related	signal	from	the	homogenized	monthly	temperature	records.	The	

GISTEMP	UHI	correction	adjusts	the	trend	of	stations	classified	as	urban	or	peri‐

urban	to	match	the	trend	of	a	distance‐weighted	composite	record	made	from	

nearby	rural	stations.		An	urban	station	is	adjusted	only	if	there	are	at	least	three	

nearby	rural	stations	with	values	that	overlap	at	least	two‐thirds	of	the	urban	

station’s	period	of	record.		Periods	and	urban	stations	that	fail	the	rural	station	

requirement	are	excluded	from	the	GISS	analysis.		Rural	stations	are	ideally	selected	

to	be	within	500	km	of	the	urban	station,	but	in	some	cases	could	be	as	far	as	1000	

km	away	to	meet	the	selection	requirement.		Note	that	in	performing	this	

adjustment	only	rural	stations	from	USHCN	have	been	used.		This	contrasts	with	the	

usual	GISTEMP	analysis	which	will	use	any	suitable	rural	stations	in	GHCN,	possibly	

including	stations	not	in	USHCN	(such	as	in	Canada	and	Mexico).		Given	the	spatial	

density	of	stations	in	USHCN	we	expect	any	differences	in	adjustment	to	be	minimal. 

The	scheme	for	identifying	stations	as	urban	has	changed	in	the	history	of	the	

GISTEMP	analysis	(see	Hansen	et	al.,	1999;	Hansen	et	al.,	2001;	Hansen	et	al.,	2010);	

here	we	use	nighttime	radiances	from	the	DMSP	calibrated	radiance	product	

described	earlier.	The	analysis	was	carried	out	using	the	ccc‐gistemp	software	

supplied	by	the	Climate	Code	Foundation	[Barnes	and	Jones,	2011].		The	resulting	

version	2.0	series	with	the	GISTEMP	UHI	correction	should	be	essentially	the	same	

as	the	USHCN	data	used	in	NASA’s	GISTemp	product,	albeit	with	a	slightly	more	up‐

to‐date	dataset	used	for	determining	nighttime	brightness	and	separate	application	

of	the	Step	2	(UHI	correction)	process	to	average	monthly	minimum	and	maximum	

data	rather	than	applying	it	to	the	mean	monthly	data	only. 



This	analysis	described	above	produces	estimates	of	urban‐rural	differences	

for	each	month	from	1895‐2010	for	mean	monthly	minimum	and	maximum	

temperatures	for	the	TOB,	v2,	v2+Step	2,	and	v2‐rural	neigh/v2‐urban	neigh	

variants	for	each	of	the	four	urbanity	proxy	via	both	station	pairing	and	spatial	

gridding	methods,	resulting	in	64	different	distinct	urban‐rural	differences	for	each	

month. 

 

4.	Results 

4.1	Unhomogenized	(TOB‐Adjusted)	Data 

Figure	1,	which	summarizes	the	urban	minus	rural	(urban‐rural)	trend	

differences	for	all	data	set	versions,	indicates	that	the	USHCN	unhomogenized	(TOB‐

only	adjusted)	data	contains	significant	urban	warming	signals	(p	<	0.05	for	linear	

trend	fit)	over	the	period	from	1895	to	present	in	both	the	minimum	and	maximum	

temperatures	according	to	nearly	all	urban	classification	and	comparison	methods	

(the	exception	being	GRUMP	and	Nightlights	maximum	temperatures	evaluated	via	

spatial	gridding).	 



Figure	1:	1895‐2010	trends	and	95%	confidence	intervals	in	urban‐rural	differences	by	proxy	

type.	Circles	represent	TOB	adjusted	data,	Triangles	represent	version	2.0	data	adjusted	using	

rural	neighbors	only	(v2‐rural	neigh),	Diamonds	represent	version	2.0	homogenized	data	

(v2),	and	Squares	represent	version	2.0	homogenized	data	with	additional	corrections	using	

GISS’s	Step	2	method	(Step	2).	Solid	shapes	show	results	from	the	station	pair	method,	and	

hollow	shapes	show	results	from	the	spatial	gridding	method. 

As	expected,	the	urban	signal	is	larger	in	minimum	temperatures	than	in	maximum	

temperatures.	Urban‐rural	difference	trends	in	minimum	temperature	range	

between	0.05	and	0.5	C	per	century	in	minimum	temperatures	for	the	1895‐2010	

period	for	the	unhomogenized	data	depending	on	the	classification	and	comparison	

method	(e.g.	station	pairing	or	spatial	gridding).	 

 



Figure	2:	1960‐2010	trends	and	95%	confidence	intervals	in	urban‐rural	differences	by	proxy	

type.	Circles	represent	TOB	adjusted	data,	Triangles	represent	version	2.0	data	adjusted	using	

rural	neighbors	only	(v2‐rural	neigh),	Diamonds	represent	version	2.0	homogenized	data	

(v2),	and	Squares	represent	version	2.0	homogenized	data	with	additional	corrections	using	

GISS’s	Step	2	method	(Step	2).	Solid	shapes	show	results	from	the	station	pair	method,	and	

hollow	shapes	show	results	from	the	spatial	gridding	method. 

As	shown	in	Figure	2,	there	is	also	evidence	of	a	significant	urban	signal	in	the	

unhomogenized	data	during	the	past	50	years,	with	urban‐rural	difference	trends	of	

between	0.2	and	0.6	C	per	century	across	all	urbanity	proxies	for	the	period	1960‐

2010.	This	large	urban	warming	signal	does	not	appear	to	be	a	result	of	any	

correlation	between	instrument	changes	and	urban	form	because	it	occurs	with	a	

similar	magnitude	in	both	the	station	pairing	method	(which	controls	for	

instrument	type)	and	the	spatial	gridding	method	(which	does	not). 



Figure	3:	Running	5‐year	mean	of	urban	and	rural	differences	for	time	of	observation‐

adjusted	min	USHCN	station	data	from	1895	to	2010,	using	both	station‐pair	(solid	line)	and	

spatial	gridding	(dashed	line)	methods	for	GRUMP,	Nightlight,	ISA	(10%),	and	Population	

Growth	urbanity	proxies. 

For	minimum	temperatures,	the	urban	warming	signal	over	both	century	and	half‐

century	timeframes	is	larger	in	the	more	restrictive	urban	classification—ISA—that	

contains	relatively	few	urban	stations,	and	are	smaller	in	the	classifications—

GRUMP,	Nightlights,	and	Population	Growth—that	contain	a	more	even	split	

between	urban	and	rural	designations.	The	station	pairing	method	often	shows	

significantly	larger	urban	warming	than	the	spatial	gridding	method;	however,	the	

pairing	method	does	not	account	for	the	potential	biases	related	to	the	spatial	

distribution	of	the	station	pairs.	As	shown	in	Figure	3,	the	divergences	between	



station	pairing	and	spatial	gridding	methods	are	particularly	pronounced	prior	to	

1950,	which	may	be	indicative	of	a	larger	geographic	bias	to	the	station	pairs	during	

that	period.	On	the	other	hand,	both	methods	produce	similar	results	for	periods	

after	1950.		 

As	supplementary	Figure	SI.1	shows,	the	rural‐urban	differences	are	even	

larger	in	the	raw	minimum	temperatures	than	in	the	TOB‐adjusted	data	especially	

for	the	period	since	1950	when	time‐of‐observation	changes	were	prevalent.		

However,	as	mentioned	above,	this	difference	is	not	likely	driven	by	any	physical	

phenomena	related	to	UHI.		Rather	it	likely	reflects	a	higher	frequency	of	time	of	

observation	changes	at	non‐urban	stations. 

Figure	4:	Running	5‐year	mean	of	urban	and	rural	differences	for	time	of	observation‐



adjusted	max	USHCN	station	data	from	1895	to	2010,	using	both	station‐pair	(solid	line)	and	

spatial	gridding	(dashed	line)	methods	for	GRUMP,	Nightlight,	ISA	(10%),	and	Population	

Growth	urbanity	proxies. 

	 Maximum	temperature	urban‐minus‐rural	trends	in	the	unhomogenized	

(TOB)	data	are	also	significantly	larger	than	zero	over	the	period	1895	to	2010	for	

most	urban	classifications,	but	are	smaller	than	the	trends	in	minimum	temperature	

urban‐rural	differences.	They	also	show	considerably	less	variation	across	urbanity	

proxy,	with	urban	warming	trends	of	around	0.08	to	0.22	C	per	century	for	the	

station	pairing	method	and	‐0.04	to	0.2	C	per	century	for	the	spatial	gridding	

method.	However,	maximum	temperature	urban‐rural	difference	trends	are	larger	

over	the	period	1960	to	2010,	particularly	in	the	GRUMP	and	Population	Growth	

proxies	where	they	exceed	minimum	urban	minus	rural	trends.	In	this	case,	there	is	

also	a	greater	divergence	between	analysis	methods,	with	the	station	pairing	

method	showing	much	larger	urban	warming	than	the	spatial	gridding	method,	

which	again,	likely	reflects	a	spatial	bias	caused	by	the	non‐uniform	distribution	of	

station	pairs. 

By	comparing	the	trends	of	rural	stations	to	those	of	all	USHCN	stations,	we	

can	use	the	spatial	gridding	method	to	get	an	estimate	of	the	extent	to	which	overall	

CONUS	minimum	temperature	trends	over	the	past	century	may	have	been	driven	

by	the	urban	warming	signal	(see	Table	SI.1).	By	this	estimate,	the	unhomogenized	

minimum	temperature	data	from	rural	USHCN	stations	yields	trends	that	are	

between	14	and	21	percent	smaller	on	average	over	the	period	1895‐2010	period	



than	the	trends	from	the	full	USHCN	network.		This	difference	decreases	to	between	

about	6	and	9	percent	during	the	last	50	years.		 

4.2	Homogenized	Version	2	Data	(v2) 

The	pairwise	homogenization	algorithm	(PHA)	significantly	reduces	the	

difference	between	urban	and	rural	minimum	temperature	trends	according	to	all	

analysis	methods	and	station	classifications.	This	is	particularly	true	over	the	1960‐

2010	period,	where	a	the	vast	majority	of	the	urbanity	proxies	and	methods	indicate	

no	significant	urban	warming	in	the	minimum	data.	Maximum	temperatures	are	a	

bit	more	mixed,	though	most	proxies	and	methods	show	no	significant	urban	

warming	in	the	maximum	data	over	the	period.	As	shown	in	Figure	5,	there	is	still	a	

small	but	significant	minimum	urban	warming	prior	to	1960	in	all	urbanity	proxies	

except	for	Population	Growth.		The	station	pairing	method	suggests	some	residual	

urban	signal	before	1960,	but	this	residual	signal	is	small	in	the	spatial	gridding	

method	for	all	proxies	after	1930. 

 



Figure	5:	Running	5‐year	mean	of	urban	and	rural	differences	for	v2	homogenized	minimum	

temperature	USHCN	station	data	from	1895	to	2010,	using	both	station‐pair	(solid	line)	and	

spatial	gridding	(dashed	line)	methods	for	GRUMP,	Nightlight,	ISA	(10%),	and	Population	

Growth	urbanity	proxies. 

 

The	effect	of	homogenization	is	most	pronounced	in	the	more	restrictive	urbanity	

proxies	like	ISA	that	contain	relatively	few	urban	stations	and	show	larger	urban	

warming	trends	prior	to	homogenization.		The	divergences	between	urban	and	rural	

temperatures	that	remain	prior	to	1930	even	after	homogenization	are	likely	in	part	

due	to	the	combination	or	poorer	metadata	for	that	time	period	and	fewer	coop	

station	records	that	can	be	used	as	neighbors.	 

 



Figure	6:	Running	5‐year	mean	of	urban	and	rural	differences	for	v2	homogenized	max	USHCN	

station	data	from	1895	to	2010,	using	both	station‐pair	(solid	line)	and	spatial	gridding	

(dashed	line)	methods	for	GRUMP,	Nightlight,	ISA	(10%),	and	Population	Growth	urbanity	

proxies. 

Notably,	urban‐rural	differences	in	maximum	temperatures	over	the	century	

timeframe	are	in	most	cases	not	significantly	reduced	by	homogenization,	as	shown	

in	Figure	6. 

Comparing	homogenized	rural	HCN	stations	to	all	HCN	stations,	we	find	that	

rural	stations	show	between	3	and	13	percent	less	average	temperature	(tave)	

warming	over	the	1895‐2010	period,	and	a	slight	but	not	significantly	different	from	

zero	reduction	in	warming	over	the	1960‐2010	period	(see	Table	SI.1).		Thus,	

residual	urban	signals	not	removed	by	data	homogenization	appear	to	be	significant	



only	for	the	period	prior	to	1960	and	effectively	only	prior	to	about	1930.		In	

summary,	pairwise	homogenization	effectively	removes	the	urban	signal	present	in	

minimum	temperature	data	from	the	last	50	to	80	years,	and	reduces	it	by	around	

50%	or	more	for	the	period	prior	to	1930	(as	can	be	seen	when	comparing	Figure	3	

and	Figure	5).			 

4.3	Homogenized	version	2	data	with	added	GISTEMP	correction	(v2+step	2) 

	 As	reported	in	Hansen	et	al.	[2010],	applying	the	GISTEMP	Step	2	UHI	

correction	to	the	USHCN	version	2	data	has	the	impact	of	reducing	the	mean	CONUS	

temperature	trend	from	0.73°C	to	0.65°C	over	the	period	1900‐2009.		As	shown	in	

Fig.	SI.1,	this	reduction	appears	to	result	almost	entirely	from	trend	adjustments	in	

the	data	for	years	prior	to	1930.		After	1930,	the	version	2.0	(52d)	and	version	2.5	

(52i)	data	are	not	significantly	impacted	by	the	Step	2	adjustment.	Moreover,	this	

trend	reduction	is	required	only	because	of	an	urban	signal	in	the	early	minimum	

temperature	data,	which	get	reduced	by	about	0.0113°C/decade	by	the	Step	2	

adjustment.		The	impact	on	maximum	temperature	is	only	0.00288°C/decade.			The	

average	of	these	impacts	is	equivalent	to	the	impact	reported	by	Hansen	et	al.	

[2010].	As	shown	in	Figures	7	and	8,	the	GISS	Step	2	adjustment	is	effectively	

removing	the	residual	urban	signal	in	both	minimum	and	maximum	temperatures	

across	all	proxies	without	any	significant	over	adjustment,	even	for	the	most	

restrictive	definitions	of	urbanity.	 



Figure	7:	Running	5‐year	mean	of	urban	and	rural	differences	for	Step	2	min	USHCN	station	

data	from	1895	to	2010,	using	both	station‐pair	(solid	line)	and	spatial	gridding	(dashed	line)	

methods	for	GRUMP,	Nightlight,	ISA	(10%),	and	Population	Growth	urbanity	proxies. 

 



Figure	8:	Running	5‐year	mean	of	urban	and	rural	differences	for	Step	2	max	USHCN	station	

data	from	1895	to	2010,	using	both	station‐pair	(solid	line)	and	spatial	gridding	(dashed	line)	

methods	for	GRUMP,	Nightlight,	ISA	(10%),	and	Population	Growth	urbanity	proxies. 

4.4	Homogenized	version	2	data	using	only	Coop	neighbors	classified	as	rural	(v2‐rural	

neigh) 

In	all	of	the	urbanity	proxies	and	analysis	methods,	the	differences	between	

urban	and	rural	station	minimum	temperature	trends	are	smaller	in	the	

homogenized	data	than	in	the	unhomogenized	data,	which	suggests	that	

homogenization	can	remove	much	and	perhaps	nearly	all	(since	1930)	of	the	urban	

signal	without	requiring	a	specific	UHI	correction.	However,	the	trends	in	rural	

station	minimum	temperatures	are	slightly	higher	in	the	homogenized	minimum	

temperature	data	than	in	the	TOB‐only	adjusted	data.				One	possible	reason	for	this	



is	that	the	PHA	is	appropriately	removing	inhomogenities	caused	by	station	moves	

or	other	changes	to	rural	stations	that	have	had	a	net	negative	impact	on	the	CONUS	

average	bias	(e.g.,	many	stations	now	classified	as	rural	were	less	rural	in	the	past	

since	they	moved	from	city	centers	to	airports	or	waste	water	treatment	plants).	

Another	possibility	is	that	homogenization	is	causing	nearby	UHI‐affected	stations	

to	"correct"	some	rural	station	series	in	a	way	that	transfers	some	of	the	urban	

warming	bias	to	the	temperature	records	from	rural	stations.		In	such	a	case,	a	

comparison	of	the	homogenized	data	between	rural	and	urban	stations	would	then	

show	a	decreased	difference	between	the	two	by	removing	the	appearance	of	an	

urbanization	bias	without	actually	removing	the	bias	itself.		 

To	help	determine	the	relative	merits	of	these	two	explanations,	the	PHA	was	

run	separately	allowing	only	rural‐	and	only	urban‐classified	Coop	stations	to	be	

used	as	neighbors	in	calculating	the	PHA	corrections	for	USHCN	stations.		In	Figure	

9,	the	spatially	averaged	U.S	minimum	temperature	anomalies	for	rural	stations	are	

shown	for	the	four	different	datasets:	the	unhomogenized	(TOB‐adjusted	only);	the	

version	2	(all‐Coop‐adjusted;	v2)	data;	the	homogenized	dataset	adjusted	using	only	

coop	stations	classified	as	rural;	and	the	homogenized	dataset	adjusted	using	only	

urban	coop	stations.		 

 



 

Figure	9:	Comparison	of	spatially	gridded	minimum	temperatures	for	the	TOB‐only	adjusted	

USHCN	data,	v2	USHCN	data	(homogenized	using	all	Coop	station	series	as	reference	series),	

USHCN	data	homogenized	using	series	from	Coop	stations	only	classified	as	rural	according	to	

the	impervious	surface	method,	and	USHCN	data	homogenized	using	series	from	Coop	stations	

only	classified	as	urban	(according	to	the	impervious	surface	method).		Top	Panel:	CONUS	

average	anomalies	for	the	four	versions	of	the	USHCN	data.		Bottom	Panel:	the	differences	

between	the	USHCN	v2	data	homogenized	with	all	Coop	station	series	and:		data	adjusted	only	

for	the	tob‐bias	(blue);	data	homogenized	using	only	rural	station	series	(green);	and,	data	

homogenized	using	only	urban	station	series	(red).	 

The	large	difference	in	the	trends	between	the	urban‐only	adjusted	and	the	rural‐

only	adjusted	datasets	suggests	that	when	urban	coop	station	series	are	used	

exclusively	as	reference	series	for	the	USHCN	some	of	their	urban‐related	biases	can	



be	transferred	to	USHCN	station	series	during	homogenization.		However,	the	fact	

that	the	homogenized	all‐coop‐adjusted	minimum	temperatures	are	much	closer	to	

the	rural‐station‐only	adjustments	than	the	urban‐only	adjustments	suggests	that	

the	bleeding	effect	from	the	ISA	classified	urban	stations	is	likely	small	in	the	USHCN	

version	2	dataset.	This	is	presumably	because	there	are	a	sufficient	number	of	rural	

stations	available	for	use	as	reference	neighbors	in	the	Coop	network	to	allow	for	

the	identification	and	removal	of	UHI‐related	impacts	on	the	USHCN	temperature	

series.		Furthermore,	as	the	ISA	classification	shows	the	largest	urban‐rural	

difference	in	the	TOB	data,	it	is	likely	that	greater	differences	between	rural‐station‐

only‐adjusted	and	all‐coop‐adjusted	series	using	stricter	rural	definitions	result	

from	fewer	identified	breakpoints	due	to	less	network	coverage,	and	not	UHI‐

related	aliasing.	Nevertheless,	it	is	instructive	to	further	examine	the	rural‐only	and	

urban‐only	adjustments	to	assess	the	consequences	of	using	these	two	subsets	of	

stations	as	neighbors	in	the	PHA.	 

	 Figure	S.I.2	shows	the	cumulative	impact	of	the	adjustments	using	the	rural‐

only	and	urban‐only	stations	as	neighbors	to	the	USHCN.		In	this	example,	the	

impermeable	surface	extent	was	used	to	classify	the	stations.		The	cumulative	

impacts	are	shown	separately	for	adjustments	that	are	common	between	the	two	

runs	(i.e.,	adjustments	that	the	PHA	identified	for	the	same	stations	and	dates)	

versus	those	that	are	unique	to	the	two	separate	urban‐only	and	rural‐only	

reference	series	runs.		In	the	case	of	both	the	common	and	unique	adjustments,	the	

urban‐only	neighbor	PHA	run	produces	adjustments	that	are	systematically	larger	

(more	positive)	than	the	rural‐only	neighbor	run.		The	magnitude	of	the	resultant	



systematic	bias	for	the	adjustments	common	to	both	algorithm	versions	is	shown	in	

black.		The	reason	for	the	systematic	differences	is	likely	that	UHI	trends	or	

undetected	positive	step	changes	pervasive	in	the	urban‐only	set	of	neighboring	

station	series	are	being	aliased	onto	the	estimates	of	the	necessary	adjustments	at	

USHCN	stations.		This	aliasing	from	undetected	urban	biases	becomes	much	more	

likely	when	all	or	most	neighbors	are	characterized	by	such	systematic	errors. 

Figure	S.I.3.	provides	a	similar	comparison	of	the	rural‐only	neighbor	PHA	

run	and	the	all‐Coop	(v2)	neighbor	run.		In	this	case,	the	adjustments	that	are	

common	to	both	the	rural‐only	and	the	all‐Coop	neighbor	runs	have	cumulative	

impacts	that	are	nearly	identical.		This	is	evidence	that,	in	most	cases,	the	Coop	

neighbors	that	surround	USHCN	stations	are	sufficiently	“rural”	to	prevent	a	

transfer	of	undetected	urban	bias	from	the	neighbors	to	the	USHCN	station	series	

during	the	homogenization	procedure.		In	the	case	of	the	adjustments	that	are	

unique	to	the	separate	runs,	the	cumulative	impacts	suggest	that	the	less	dense	

rural‐only	neighbors	are	missing	some	of	the	negative	biases	that	occurred	during	

the	1930	to	1950	period,	which	highlights	the	disadvantage	of	using	a	less	dense	

station	network.		In	fact,	the	all‐Coop	neighbor	v2	dataset	has	about	30%	more	

adjustments	than	the	rural‐only	neighbor	PHA	run	produces.			Results	using	the	

other	three	station	classification	approaches	are	similar	and	are	provided	as	Figures	

S.I.3	–	S.I.8.		 

 

5.	Conclusions 



According	to	all	four	proxy	measures	used	to	identify	station	environments	

that	are	currently	urban,	there	is	consistent	evidence	that	urban	stations	have	a	

systematic	bias	relative	to	rural	stations	throughout	the	USHCN	period	of	record.		

This	bias	has	led	to	an	apparent	urban	warming	signal	in	the	unhomogenized	data	

that	accounts	for	approximately	14	to	21	percent	of	total	rise	in	USHCN	minimum	

temperatures	averaged	over	the	CONUS	for	the	period	since	1895,	and	6	to	9	

percent	of	the	rise	over	the	past	50	years.			Homogenization	of	the	monthly	

temperature	data	via	NCDC’s	Pairwise	Homogenization	Algorithm	(PHA)	removes	

the	majority	of	this	apparent	urban	bias,	especially	over	the	last	50	to	80	years.		

Moreover,	results	from	the	PHA	using	the	full	set	of	Coop	station	series	as	reference	

series	and	using	only	those	series	from	stations	currently	classified	as	rural	are	

broadly	consistent,	which	provides	strong	evidence	that	the	reduction	of	the	urban	

warming	signal	by	homogenization	is	a	consequence	of	the	real	elimination	of	an	

urban	warming	bias	present	in	the	raw	data	rather	than	a	consequence	of	simply	

forcing	agreement	between	urban	and	rural	station	trends	through	a	spreading	of	

the	urban	signal	to	series	from	nearby	stations.			 

As	noted	in	the	introduction,	one	of	the	challenges	in	quantifying	the	UHI	

signal	in	land	surface	air	temperature	records	is	that	changes	affecting	urban	

stations	can	occur	at	both	the	micro	and	meso‐scales.		Changes	at	the	micro‐scale	

(e.g.,	small	station	moves,	growth	of	a	tree)	are	not	necessarily	of	interest	in	

evaluations	of	the	UHI	signal	because	they	are	highly	localized	and	may	have	no	

relevance	to	the	broader	land	use	changes	associated	with	urbanization	that	can	

affect	the	mesoscale	temperature	signal.		For	this	reason,	micro‐scale	changes	



reasonably	can	be	included	in	the	list	of	inhomogeneities	that	should	be	corrected	

for	via	homogenization	(along	with	instrument	changes	and	time	of	observation	

changes).		In	contrast,	it	may	be	desirable	to	preserve	changes	in	the	in	the	meso‐

scale	signal	because	these	changes	encompass	a	broader	footprint	and	are	arguably		

more	likely	to	be	related	to	larger‐scale	land	use	changes.		Unfortunately,	it	may	not	

be	possible	to	distinguish	(at	least	automatically)	changes	occurring	at	the	micro‐

scale	from	changes	at	the	meso‐scale,	especially	if	only	one	station	record	is	

available	to	sample	the	meso‐scale	signal.		Whatever	the	cause,	when	any	station	

series	exhibits	a	sustained	change	relative	to	highly	correlated	surrounding	stations,	

the	change	is	likely	to	be	identified	by	the	PHA	as	uniquely	local,	and	its	impact	on	

that	stations	temperature	trend	will	be	removed	with	a	bias	adjustment.		This	

happens	whether	the	USHCN	station	is	from	a	rural	or	urban	environment,	which	

means	that	the	same	challenge	that	exists	for	identifying	UHI	impacts	also	exists	for	

identifying	the	impacts	of	other	types	of	(non‐urban)	land	use	changes.				 

Nevertheless,	the	pairing	of	urban	and	rural	stations	in	a	manner	that	

controls	for	instrument	type	and	time	of	observation	changes	reveals	larger	trends	

at	urban	stations,	which	is	consistent	with	the	understanding	that	land	use	changes	

associated	with	urbanization	lead	to	larger	historic	temperature	trends	at	urban	

stations.		However,	that	this	larger	trend	signal	is	effectively	removed	through	

homogenization	suggests	that	the	urban	environments	characterized	by	larger	

trends	do	not	have	large	spatial	scales	that	allow	them	to	be	sampled	by	a	number	of	

Coop	stations	(or	that	the	urban	temperature	signal	is	heterogeneous)	and	thus	the	

local	urban	signal	is	being	effectively	removed	via	homogenization.		 



Because	homogenization	is	largely	successful	in	removing	urban	bias	in	the	

USHCN	temperature	data,	it	appears	that	only	about	5%	of	the	period‐of‐record	

USHCN	version	2	minimum	temperature	trends	across	the	CONUS	can	be	attributed	

to	local	urban	influences	and,	further,	that	most	of	this	contribution	is	coming	from	

data	for	years	prior	to	1930.		This	residual	urban	bias	for	the	earlier	years	in	the	

record	may	be	a	consequence	of	the	reduced	station	density	of	the	Coop	network	in	

the	early	part	of	the	twentieth	century,	which	limits	the	number	of	pairs	available	

for	detecting	inhomogenities	some	of	which	may	be	related	to	urbanization.		 

NASA	GISS’s	(GISTEMP)	“Step	2”	nightlight‐based	UHI	adjustments	

effectively	remove	the	remaining	urban‐rural	differences	during	this	early	period,	

suggesting	that	the	additional	UHI‐specific	adjustment	is	achieving	the	goal	of	

forcing	agreement	between	urban	and	rural	temperature	trends.		Nevertheless,	the	

recently	released	USHCN	version	v2.5	data	(homogenized	with	the	PHA	algorithm	

version	“52i	as	shown	in	figure	S.I.1)	improves	the	pre‐1930	period	considerably	

vis‐à‐vis	v2.0	(except	in	the	case	of	GRUMP),	which	may	also	mean	that	

homogenization	procedures	may	be	able	to	more	fully	account	for	urban‐related	

biases	in	the	future,	at	least	in	areas	with	sufficient	station	density.		In	any	case,	at	

present,	the	net	effect	of	urban‐correlated	biases	on	the	version	2.5	adjusted	data	is	

evidently	small,	accounting	for	less	than	5%	of	the	trend	since	1895	(and	between	0	

and	2%	since	1960).			While	it	would	likely	be	worthwhile	to	further	characterize	

the	uncertainty	in	UHI‐related	warming	in	datasets	like	the	USHCN	(e.g.,	by	

exploring	a	range	of	cutoffs	for	classifying	a	station	as	urban	with	the	various	

proxies	or	by	quantifying	more	site‐specific	aspects	of	a	stations	environment),	UHI	



does	not	appear	to	represent	a	significant	contributing	factor	in	the	CONUS‐average	

temperature	signal	over	the	past	50‐80	years.	 
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Supplementary	Information 

 

Figure	S.I.	1.	CONUS	average	urban	and	rural	minimum	temperature	differences	for	five	different	

versions	of	the	USHCN	station	data	and	four	different	station	classifications.		The	five	different	

dataset	versions	are	“Raw”	(no	bias	adjustments‐dashed	red);	TOB‐only	adjusted	(solid	red);	v2	fully	

adjusted	data	homogenized	using	the	pairwise	algorithm	version	“52d”	(dashed	blue);	fully	adjusted	

v2	data	homogenized	using	the	pairwise	algorithm	version	“52i”	(solid	blue);	and	fully	adjusted	v2	

data	homogenized	using	algorithm	version	“52d”	with	the	NASA	GISS	(GISTEMP)	“Step	2”	UHI	

correction.		CONUS	averages	were	computed	as	described	in	Menne	et	al.	[2009,	2010]. 

 

  



 

Table	SI.1.		Minimum	and	maximum	trends	in	CONUS	temperatures	for	specified	sets	of	stations	

using	the	Menne	et	al	[2009]	spatial	gridding	method	for	time	of	observation‐adjusted	(TOB),	

homogenized	v2.0	(52d),	and	homogenized	v2.5	(52i)	series.	 

Stations Dates Series TMIN	Trend			 TMAX	Trend	 
All	Stations 1895‐2010 TOB 0.074 0.028 
All	Stations 1895‐2010 52d 0.075 0.061 
All	Stations 1895‐2010 52i 0.070 0.056 
GRUMP	Rural 1895‐2010 TOB 0.060 0.027 
GRUMP	Rural 1895‐2010 52d 0.068 0.053 
GRUMP	Rural 1895‐2010 52i 0.068 0.056 
ISA	Rural 1895‐2010 TOB 0.064 0.026 
ISA	Rural 1895‐2010 52d 0.072 0.060 
ISA	Rural 1895‐2010 52i 0.070 0.060 
Nightlight	Rural 1895‐2010 TOB 0.062 0.025 
Nightlight	Rural 1895‐2010 52d 0.069 0.056 
Nightlight	Rural	 1895‐2010 52i 0.068 0.056 
Pop	Growth	Rural 1895‐2010 TOB 0.064 0.025 
Pop	Growth	Rural 1895‐2010 52d 0.076 0.058 
Pop	Growth	Rural 1895‐2010 52i 0.071 0.059 
All	Stations 1960‐2010 TOB 0.255 0.127 
All	Stations 1960‐2010 52d 0.248 0.189 
All	Stations 1960‐2010 52i 0.236 0.196 
GRUMP	Rural 1960‐2010 TOB 0.234 0.106 
GRUMP	Rural 1960‐2010 52d 0.242 0.184 
GRUMP	Rural	 1960‐2010 52i 0.237 0.190 
ISA	Rural 1960‐2010 TOB 0.240 0.119 
ISA	Rural 1960‐2010 52d 0.247 0.193 
ISA	Rural 1960‐2010 52i 0.234 0.198 
Nightlight	Rural 1960‐2010 TOB 0.233 0.113 
Nightlight	Rural 1960‐2010 52d 0.244 0.185 
Nightlight	Rural 1960‐2010 52i 0.234 0.194 
Pop	Growth	Rural 1960‐2010 TOB 0.236 0.120 
Pop	Growth	Rural 1960‐2010 52d 0.248 0.190 
Pop	Growth	Rural 1960‐2010 52i 0.236 0.193 
 
 



 

Figure	S.I.	2.		Cumulative	average	of	PHA‐derived	minimum	temperature	adjustments	using	Coop	

station	reference	series	classified	as	urban	only	(red	lines)	and	as	rural	only	(green	lines)	according	

to	the	impermeable	surface	area	(ISA10)	classification	method.		The	cumulative	average	of	the	

adjustments	that	are	common	to	both	datasets	are	shown	as	solid	lines	and	those	that	are	unique	are	

shown	as	dashed	lines.	

	 	



 

Figure	S.I.	3.		Cumulative	average	of	PHA‐derived	minimum	temperature	adjustments	using	all	Coop	

station	series	as	reference	series‐v2‐“52d”	(red	lines)	and	classified	as	rural	only	(green	lines)	

according	to	the	impermeable	surface	classification	method.		The	cumulative	average	minimum	

temperature	adjustments	that	are	common	to	both	datasets	are	shown	as	solid	lines	and	those	that	

are	unique	are	shown	as	dashed	lines. 

  



 

Figure	S.I.	4.		As	in	Fig.	S.I.2	but	from	stations	classified	using	GRUMP. 

  



	

Figure	S.I.	5.		As	in	Fig.	S.I.3	but	from	stations	classified	using	GRUMP. 

	

 

 

  



 

 

Figure	S.I.	6.		As	in	Fig.	S.I.2	but	from	stations	classified	using	Nightlights. 

  



 

 

Figure	S.I.	7.		As	in	Fig.	S.I.3	but	from	stations	classified	using	Nightlights. 

  



 

Figure	S.I.	8.		As	in	Fig.	S.I.2	but	from	stations	classified	using	population	growth. 

  



 

Figure	S.I.	9.		As	in	Fig.	S.I.3	but	from	stations	classified	using	population	growth. 

  



Data	Sources 

 

Urbanity	Proxies 

For	the	satellite	nightlights,	the	Global	Radiance	Calibrated	Nighttime	Lights	data‐

set	year	2006,	satellite	F16	was	used:	

http://www.ngdc.noaa.gov/dmsp/download_radcal.html 

 

For	population	growth	and	low	population	proxies,	Gridded	1	km	Population	

Estimates	for	the	Conterminous	U.S.,	1930‐2000	were	used:	

http://www.ncdc.noaa.gov/oa/climate/research/population/popdata.html 

 

For	impermeable	surfaces,	Global	Distribution	and	Density	of	Constructed	

Impervious	Surfaces	was	used:	

http://www.ngdc.noaa.gov/dmsp/download_global_isa.html 

 

For	urban	boundaries,	Global	Rural‐Urban	Mapping	Project	(GRUMP)	data	was	

used:	http://sedac.ciesin.columbia.edu/gpw/documentation.jsp	 

 

Station	and	Temperature	Data	

USHCN	TOB	and	version	2.0	maximum	and	minimum	monthly	temperature	data:		

ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/papers/hausfather‐etal2013‐suppinfo/data/	

ushcn‐temps‐9641C_201207.zip	

 

 



USHCN	v2.0	monthly	maximum	and	minimum	temperature	data	homogenized	using	

rural	only	and	urban	only	data	are	available	here:		

ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/papers/hausfather‐etal2013‐

suppinfo/data/	ushcn‐urban‐rural.tar.gz  

 

USHCN	v2.0	monthly	maximum	and	minimum	homogenized	temperature	data	with	

the	additional	NASA	GISS	(GISTEMP)	step	2	urban	correction	applied	are	available	

here:		

ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/papers/hausfather‐etal2013‐

suppinfo/data/ushcn‐with‐step2.tar.gz  

	

USHCN	rural/urban	proxy	classifications,	instrument	type	and	transition	dates: 

ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/papers/hausfather‐etal2013‐

suppinfo/metadata/ushcn‐proxy‐metadata.csv 

  



Source	Code 

Code	used	for	both	the	station	pairing	and	spatial	gridding	analysis	is	available	for	

the	statistical	software	STATA	here:	

ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/papers/hausfather‐etal2013‐

suppinfo/code/stata 

A	Java	version	of	the	code	is	also	available:	

ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/papers/hausfather‐

etal2013suppinfo/code/java 

 

Fortran	code	(spheremap.f)	used	in	the	gridding	method	described	in	Menne	et	al.	

[2009;	2010]	was	obtained	via	anonymous	ftp	from	climate.geog.udel.edu	and	is	

described	here:		

http://climate.geog.udel.edu/~climate/publication_html/Pdf/WRP_Am_Cart_85.pdf	

 

Code	used	to	produce	both	fully	homogenized	and	rural‐homogenized	data	via	the	

Pairwise	Homogenization	Algorithm	in	Menne	and	Williams	[2009]	is	available	here:	 

ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/v3/software/52i/ 

 

Code	used	to	apply	the	NASA	GISS	Step	2	adjustment	is	available	here:	

http://code.google.com/p/ccc‐gistemp/	 

 

Numerical	values	for	trends	and	confidence	intervals	for	Figures	1	and	2	are	

available	here:	ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/ papers/hausfather‐

etal2013suppinfo	/trends/paired‐and‐gridded‐trends‐and‐cis.csv 


