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ABSTRACT

An automated homogenization algorithm based on the pairwise comparison of monthly temperature series

is described. The algorithm works by forming pairwise difference series between serial monthly temperature

values from a network of observing stations. Each difference series is then evaluated for undocumented

shifts, and the station series responsible for such breaks is identified automatically. The algorithm also makes

use of station history information, when available, to improve the identification of artificial shifts in tem-

perature data. In addition, an evaluation is carried out to distinguish trend inhomogeneities from abrupt

shifts. When the magnitude of an apparent shift attributed to a particular station can be reliably estimated, an

adjustment is made for the target series. The pairwise algorithm is shown to be robust and efficient at

detecting undocumented step changes under a variety of simulated scenarios with step- and trend-type

inhomogeneities. Moreover, the approach is shown to yield a lower false-alarm rate for undocumented

changepoint detection relative to the more common use of a reference series. Results from the algorithm are

used to assess evidence for trend inhomogeneities in U.S. monthly temperature data.

1. Introduction

Discontinuities in a climate series can be induced by

virtually any change in instrumentation or observation

practice. The relocation, replacement, or recalibration

of an instrument, for example, can lead to an abrupt

shift in time-ordered observations that is unrelated to

any real change in climate. Likewise, alterations to the

land use or land cover surrounding a measurement site

might induce a sudden or ‘‘creeping’’ change (Carretero

et al. 1998; Karl et al. 1988) that could limit the degree

to which observations are representative of a particular

region. Such artifacts in the climate record ultimately

confound attempts to quantify climate variability and

change (Thorne et al. 2005). Unfortunately, changes to

the circumstances behind a series of climate observa-

tions are practically inevitable at some point during the

period of record. For this reason, testing for artificial dis-

continuities or ‘‘inhomogeneities’’ is an essential compo-

nent of climate analysis. Often, the test results can then be

used to adjust a series so that it more closely reflects

only variations in weather and climate.

Numerous approaches have been employed to detect

discontinuities in climate series (Peterson et al. 1998a),

and comparison studies have recently proliferated (e.g.,

Ducré-Robitaille et al. 2003; DeGaetano 2006; Reeves

et al. 2007, hereafter R07). The goal of this work is to

describe an automated homogenization algorithm for

monthly data that builds on the most efficient changepoint

detection techniques using a holistic design approach. For

example, the algorithm relies upon a pairwise comparison

of temperature series in order to reliably distinguish ar-

tificial changes from true climate variability, even when

the changes are undocumented (Caussinus and Mestre

2004). Consequently, the procedure detects inhomoge-

neities regardless of whether there is a priori knowledge

of the date or circumstances of a change in the status

of observations (Lund and Reeves 2002). In addition,

the algorithm employs a recursive testing strategy to

resolve multiple undocumented changepoints within a

single time series (Menne and Williams 2005, hereafter

MW05). Last, the procedure explicitly looks for both

abrupt ‘‘jumps’’ as well as local, unrepresentative trends

in the temperature series (DeGaetano 2006).

The organization of the paper is as follows: additional

background on the design considerations for constructing

this ‘‘pairwise’’ homogenization algorithm is provided in

section 2. In section 3, the specific components of the

algorithm are described. In section 4, an assessment of the
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algorithm’s skill at changepoint detection and how this

skill compares to previous studies is provided by means of

simulated temperature series. Because of recent interest

in land use change and its impact on the temperature record

(e.g., Peterson and Owen 2005; Kalnay et al. 2006; Parker

2006; Pielke et al. 2007), the algorithm was also applied to

historical temperature data from the U.S. Cooperative

Observer (Coop) Network to assess the frequency of local,

nonrepresentative trends as discussed in section 5. Some

concluding remarks are offered in section 6.

2. Design considerations for the pairwise algorithm

a. Relative changepoint testing

Conrad and Pollak (1962) state that ‘‘a climatological

series is relatively homogeneous with respect to a syn-

chronous series at another place if the temperature dif-

ferences (or precipitation ratios) of pairs of homologous

averages constitute a series of random numbers’’ (i.e.,

white noise). The assumption is that similar variations in

climate occur at nearby locations because of the spatial

correlation inherent to meteorological fields (Livezey

and Chen 1983). A statistically significant and persistent

violation of relative homogeneity is presumed to be ar-

tificial or, at least, to have origins other than the back-

ground variations in weather and climate. Relative ho-

mogeneity testing is therefore conducted primarily to

distinguish artificial breaks from real climate variability,

although it may also improve the power of detecting

artificial shifts. The reason is that when two temperature

series Xtf g and Ytf g are highly correlated [i.e., Corr

(Xt, Yt) 5 r . ½], the variance of their differences will

be lower relative to the original series.

To carry out relative homogeneity testing, a reference

series is commonly constructed by averaging values

from locations near the target site whose observations

are in question (Karl and Williams 1987; Alexandersson

and Moberg 1997; Vincent 1998). Unfortunately, the

homogeneity of the reference series cannot be taken for

granted because undocumented changepoints may be

present in any one of the averaged series (Hanssen-

Bauer and Førland 1994; MW05). Strategies for reducing

changepoint attribution errors have included assessing

the homogeneity of the reference series itself (McCarthy

et al. 2008) and building a reference from previously

adjusted series (González-Rouco et al. 2001). Unfortu-

nately, conducting a separate assessment of reference

series homogeneity fails to exploit the enhanced sensi-

tivity of relative homogeneity testing, and many small-

amplitude changepoints may go undetected in the ref-

erence series only to be later attributed to the target

series. Similar problems may arise when adjusted data

are used to build a reference series because artifacts

from the original imperfect reference series can be

transferred to the adjusted data themselves.

Alternatively, relative homogeneity testing can be

implemented via a pairwise comparison of individual

climate series (Jones et al. 1986; Slonosky et al. 1999;

Menne and Duchon 2001; Caussinus and Mestre 2004).

In pairwise testing, the cause of undocumented change-

points can be traced more directly, that is, without first

testing the reference series or assuming it is homoge-

neous. Unfortunately, implementing pairwise testing has

usually required a manual review of the results. For ex-

ample, Jones et al. (1986) conducted an arduous station-

by-station homogenization by manually determining

the cause of changepoints in paired difference series.

Caussinus and Mestre (2004) computed the locations of

changepoints in difference series automatically, but still

deferred to an analyst to attribute the cause. In contrast,

an automated approach was developed for the pairwise

algorithm, as described in section 3.

b. Distinction between documented and
undocumented changepoints

In the absence of station history records, the date of

inhomogeneity must be treated as an unknown parame-

ter. In such cases, a systematic search through all values

in a series is required to identify the dates of statistically

significant discontinuities. The systematic nature of the

search necessitates the use of a more conservative set of

critical values relative to the standard values that are

appropriate for testing the significance of known changes

to observation practice (Lund and Reeves 2002). This

means that tests for undocumented changepoints are less

sensitive than comparable tests for documented changes.

It follows that to maximize the power of changepoint

detection, station histories should be exploited when-

ever possible.

The strategy used by the pairwise algorithm is to first

identify all evidence of changepoints using the less sensi-

tive tests for undocumented changepoints. Where possi-

ble, the results are then combined with information about

documented changes whose impact may go undetected

by these less sensitive tests. An important benefit of this

approach is that all possible changepoints are identified

before estimates of their magnitude are made.

c. Resolving multiple undocumented changepoints

While the issue of accurately resolving multiple un-

documented changepoints remains an active area of sta-

tistical research (R07), two approaches are in operative

use. The first, more common approach uses a recursive

testing procedure (e.g., Vincent 1998) to overcome the

‘‘at most one changepoint’’ assumption behind most
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hypothesis tests for undocumented changepoints. The

second approach relies on a penalty function to con-

strain the number of changepoints resolved through an

optimization routine used to maximize the contrast be-

tween sequential mean levels of a series (e.g., Caussinus

and Mestre 2004).

A recursive testing approach is used in the pairwise

algorithm for the following two reasons: First, the ap-

proach is associated with a low probability of false

changepoint detection without requiring an analyst to in-

terpret the results (cf. Caussinus and Mestre 2004). Sec-

ond, MW05 noted that when the recursive hypothesis test

method is carried out using a semihierarchical splitting

algorithm (Hawkins 1976), the power of changepoint de-

tection can be comparable to that of optimal algorithms.

Recursive testing is based on a hierarchic, binary

segmentation of the test series whereby a series is split

at the location where the test statistic reaches a maxi-

mum, that is, the point at which the separation between

the mean before and after the breakpoint is greatest.

Then, the subsequences on either side of the first split

are likewise evaluated, and the process is repeated re-

cursively until the magnitude of the statistic does not

exceed the chosen significance level in any remaining

subsequences (or the sample size in a segment is too

small to test). A semihierarchic implementation of this

method means that each splitting step is followed by a

merging step to test whether a split chosen at an earlier

stage has lost its importance after subsequent break-

points are identified, thereby more closely approxi-

mating an optimal solution.

d. Impact of local, unrepresentative trends

Ideally, a changepoint detection method would dif-

ferentiate trend changes from step changes. In practice,

however, many of the commonly used tests for undoc-

umented changepoints are not robust to the presence of

trends in the test data because they are based solely on

comparing the means of two sequential intervals. Use of

such tests in the presence of trends can lead to falsely

detected step changes as well as to inaccurate estimates

of the magnitude of a shift when it occurs within a

general trend (DeGaetano 2006; Pielke et al. 2007).

Conversely, methods that directly account for both step

changes and trend changes (e.g., Vincent 1998; Lund

and Reeves 2002; Wang 2003) are characterized by

much lower powers of detection than the simpler dif-

ference in means tests.

While no one test clearly outperforms others under

all circumstances, the standard normal homogeneity test

(SNHT; Alexandersson 1986) has been shown to have

superior accuracy in identifying the position of a step

change under a wide variety of step and trend inho-

mogeneity scenarios relative to other commonly used

methods (DeGaetano 2006; R07). For this reason, the

pairwise algorithm uses the SNHT along with a verifica-

tion process that identifies the form of the apparent

changepoint (e.g., step change, step change within a trend,

etc.). In fact, the pairwise testing procedure is similar to

the Vincent (1998) and R07 forward and backward re-

gression methods, respectively, but is more easily adapt-

able to a recursive testing approach for resolving mul-

tiple undocumented changepoints, and at the same time

retains the higher power of detection of the SNHT.

3. Description of the pairwise algorithm

The pairwise algorithm is executed according to the

following six steps:

(i) Select a set of ‘‘neighbors’’ for each ‘‘target’’ series

in the network, and form pairwise difference series

between the target and its neighbors.

(ii) Identify the timing of shifts in all target-minus-

neighbor difference series using SNHT.

(iii) Verify each apparent shift identified by SNHT in

the pairwise differences (e.g., does the apparent

shift look more like a trend?).

(iv) Attribute the cause of shifts in the set of target-

minus-neighbor difference series to the various

‘‘culprit’’ series.

(v) Quantify the uncertainty in the timing of shifts

attributed to each culprit series.

(vi) Estimate the magnitude of the identified shifts for

use in adjusting the temperature series to reflect

the true background climate signal.

Each of these steps is described in some detail below.

a. Selection of neighbors and formulation of
difference series

The pairwise algorithm starts by finding the 100 nearest

neighbors for each temperature station within a network

of stations. These neighboring stations are then ranked

according to their correlation with the target. The first

differences of the monthly anomalies are used to cal-

culate the correlation coefficients [i.e., Corr (Xt �Xt�1,

Yt � Yt�1)] in order to minimize the impact of artificial

shifts in determining the correlation (Peterson et al.

1998b). A series must simply be positively correlated

with the target series to be eligible as a neighbor. Eli-

gible neighbors could also be restricted to those series

for whom r $ ½. This restriction effectively occurs in

practice for monthly temperature values from the U.S.

Cooperative Observer Network where more than 99.5%

of the monthly temperature series from the 100 nearest

neighbors are correlated at this level (and r $ 0.8 in

90% of cases).
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From all eligible neighbors, the set used for the

pairwise analysis is selected using a two-step process.

First, an account is made of the years and months for

which both the target and its 40 most highly correlated

neighbors report monthly mean maximum and mini-

mum temperature data. Then, beginning with the 41st

most highly correlated neighbor, the algorithm assesses

whether an additional neighbor adds any data for the

years and months that have fewer than seven viable

neighbors. If the neighbor in question provides records

for such data-sparse periods, it replaces the least cor-

related of the original 40 with the new neighbor pro-

vided that the addition does not remove data for other

data-sparse periods. This process ensures that, when-

ever possible, at least seven neighbors are available at

all times during the target station’s period of record (the

rationale for attempting to make at least seven target–

neighbor comparisons is provided in section 4).

Next, time series of differences Dtf g are formed be-

tween all target–neighbor monthly temperature series.

To illustrate this, take two monthly series Xtf g and

Ytf g, that is, a target and one of its correlated neigh-

bors. Following Lund et al. (2007), these two series can

be represented as

XmT1n 5 mX
v 1 bX(mT 1 n) 1 dX

mT1n 1 «X
mT1n (1)

and

YmT1n 5 mY
v 1 bY(mT 1 n) 1 dY

mT1n 1 «Y
mT1n, (2)

where m represents the monthly mean anomaly at the

specific series, T 5 12 represents the months in the an-

nual cycle, n 2 1, . . . , 12f g is the monthly index, m 5 the

year (or annual cycle) number, and the «t terms denote

mean zero error terms at time t for the two series. The dt

terms represent shift factors cause by station changes,

which are thought to be step functions. Following Lu and

Lund (2007), these shift factors are of the form

dX
nT1v 5

DX
1 , 1 # t , cX

1

DX
2 , cX

1
# t , cX

2

..

.

DX
k , cX

k�1
# t , nX

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

and

dY
nT1v 5

DY
1 , 1 # t , cY

1

DY
2 , cY

1
# t , cY

2

..

.

DY
k , cY

k�1
# t , nY

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

,

(3)

where n 5 the total number of values common to Xtf g
and Ytf g, and D and c represent the size and time of

a shift, respectively. Because the timing of the level

shifts is often unknown in climate networks, the goal

of the pairwise algorithm is to reveal the shift times

c1, c2, . . . , ck�1

� �
not only for Xtf g and Ytf g, but for all

of the series in the network no matter how complete the

station metadata. Once the timing of the shifts is known,

their magnitudes D1, D2, . . . , Dk�1

� �
can be estimated.

Differencing the Xtf g and Ytf g yields the Dtf g series,

which has the form

DmT1v 5 (mX
n � mY

n ) 1 (bX � bY)(mT 1 y)

1 (dX
mT1n � dY

mT1n) 1 «X
mT1n � «Y

mT1n. (4)

In reality, it is unrealistic to assume that bX and bY are

stationary in t given the nature of multidecadal varia-

tions in climate series; however, it may be that bX ’ bY

in general. This assumption is evaluated further in

subsequent steps because if bX 6¼ bY , then a local, un-

representative trend (i.e., creeping inhomogeneity) is

present in Xtf g and/or Ytf g. At present, the periodicity

in (4) is considered to be negligible, especially since

Xtf g and Ytf g are first deseasonalized.

Figure 1 provides an example Dtf g series formed

between mean monthly maximum temperature anom-

alies from Chula Vista, California, and nine highly

correlated neighbor series. The reduction in the vari-

ance of the Dtf g series relative to the original target

series is clearly evident. The variety of overlapping

periods and relative shifts between the records from

Chula Vista and its neighbors is common in surface

temperature records.

b. Identification of undocumented changepoints

After all difference series have been formed, the

SNHT is used to identify undocumented changepoints

in each Dtf g using the semihierarchical splitting algo-

rithm and a 5% significance level (a 5 0.05). The SNHT

evaluates the null hypothesis (H0) that a Dtf g series

has a constant mean against the alternative hypothe-

sis (HA) that there is an undocumented step change

on date c. To account for the possibility of multiple

changepoints, the difference series is assumed to consist

of K segments, each bounded by two changepoints (ck�1

and ck). In the pairwise algorithm, SNHT takes the form

H0: Dtf g ! N(mk, s2), ck�1 1 1 # t # ck, (5)

HA:
Dtf g ! N(m1, s2),
Dtf g ! N(m2, s2),

�
ck�1 1 1 # t # c

c 1 1 # t # ck

, (6)

where N(m, s2) refers to a random normal variable with

a mean m and variance s2, and m1 6¼ m2. For convenience
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FIG. 1. Mean monthly maximum temperature anomalies for Chula Vista (target) and differences between monthly

temperature anomalies at Chula Vista and nine neighboring series (T-N1 through T-N9).
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we define c0 5 1 and cK 5 n, the total number of values

in the Dtf g series. The unsubscripted c in (6) refers to

the assignment of an undocumented changepoint between

two previously established changepoints (ck�1 and ck) as

the semihierarchal splitting algorithm iterates through the

succession of splitting and merging steps, ultimately con-

verging on a solution of K segments bounded by K 2 1

shifts.

c. Classification of breakpoints identified by the
SNHT test

The result of step b is a set of K 2 1 apparent

changepoints for each Dtf g series. Because the SNHT

assumes that each series is of the form

fDtg5 mk 1 «t, ck�1 1 1 # t # ck, for k 5 1, K, (7)

the next step determines whether this piecewise sta-

tionary model is justified for each changepoint. The deter-

mination is made by fitting a hierarchy of potential mod-

els for all segments centered on each kth breakpoint.

The five models (M1–M5) are described in Table 1

(after R07). The model that minimizes the Bayesian

information criterion (BIC; Schwarz 1978) is selected as

the best representation for each changepoint.

Procedurally, the BIC is calculated by fitting M1–M5

to every segment ck�1 1 1 to ck11 for all k 5 1, K. The

BIC is defined as

BIC( p) 5 �2 log (L) 1 log (n0)p, (8)

where p is the number of parameters required to fit the

model, n0 is the number of data points in the segment

from ck�1 1 1 to ck11, and L is the likelihood of the

model in question. For the models listed in Table 1,

�2 log (L) 5 n0 log (SSE/n0), (9)

where SSE refers to the sum of squared errors for the

particular model fit.

In some cases, one or more of the original K 2 1

changepoints may be eliminated from the solution for a

particular Dtf g series. For example, if the true model

between the values of ck�1 1 1 and ck11 is a constant

increasing trend (M2), the SNHT may have identified

an apparent jump in the middle of the trend interval,

whereas the BIC is likely to be lower for M2 than for

any of the other four models. In such a case, the false

changepoint time is removed from cD
1 , cD

2 , . . . , cD
k�1

� �
and K is decremented. Alternatively, the use of the BIC

may determine that the Dtf g segment between ck�1 1 1

and ck11 more appropriately follows M4 (step change

within a constant trend) or M5 (a step change separated

by different trends). If so, there is evidence of a relative

trend between the two series, and the magnitude of the

step change D required in subsequent steps e and f

should be calculated using the higher dimension models

(M4 and M5) to avoid calculating a biased estimate of

the step.

d. Attribution of shifts in the difference series

Given that breaks in a difference series will be in-

duced by discontinuities in either Xtf g or Ytf g, the next

step is to identify the series responsible for a particular

discontinuity. To begin, an array of change dates by

station is formed, and all of the changepoint dates de-

tected in the Dtf g series are temporarily assigned to

both Xtf g and Ytf g. Specifically, a count is incremented

for the date of shift each time a station is implicated by a

break in one of its difference series. The resulting array

of change dates by station is then ‘‘unconfounded’’ by

systematically identifying those stations that are com-

mon to numerous difference series with the same date

of change. More specifically, the station/date with the

highest overall changepoint count is identified. This

station is then tagged as the ‘‘culprit’’ or ‘‘perpetrator,’’

that is, as the cause of the breaks on the date with the

highest breakpoint count. The corresponding count on

that particular change date is then decremented for all

of the perpetrator’s neighbors, and the process is re-

peated using the updated shift–date tallies. The proce-

dure continues recursively until no station/shift date

count is greater than one for any station/date in the

period of record.

e. Assignment of undocumented changepoint dates

Although undocumented shifts are assigned to a

perpetrating series in step d, the date of an undocu-

mented changepoint returned by the SNHT is subject to

sampling variability. As illustrated in Fig. 2, the degree

of this sampling variability is a function of the magni-

tude of changepoint, with larger changepoints associ-

ated with more precise estimates of the date of change.

TABLE 1. Hierarchy of changepoint models for a temperature

difference series {Dt}, where the subscript t refers to the time step

of the series (e.g., 1 month), m refers to the mean, b refers to the

trend, and «t represents a random error term.

Model Description

Schematic of

model

Number of

parameters p

required to fit

model

M1 Dt 5 m 1 «t 1

M2 Dt 5 m 1 bt 1 «t 2

M3 Dt 5
m1 1 «t, t # c
m2 1 «t, t . c

�
3

M4 Dt 5
m1 1 bt 1 «t , t # c
m2 1 bt 1 «t , t . c

�
4

M5 Dt 5
m1 1 b1t 1 «t, t # c
m2 1 b2t 1 «t, t . c

�
5
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This means that testing a group of target–neighbor

difference series often leads to a range of undocu-

mented changepoint dates clustered around the time

of the actual change. The simulations summarized in

Fig. 2 were used to estimate the confidence limits of a

changepoint date as a function of the magnitude of step

change.

To determine which change dates likely refer to the

same discontinuity, an interim estimate of step-change

magnitude is therefore necessary. The estimate is cal-

culated using the most appropriate change model (M3,

M4, or M5) according to the BIC, which is used to de-

termine the range of uncertainty for a particular un-

documented shift date. The cluster of dates falling

within overlapping confidence limits is then conflated to

a single date at the target in one of two ways: 1) it is

assigned to the date of a known event in the target

station’s history that occurs within the confidence limits

for a shift of that magnitude, or 2) it is assigned to the

most common changepoint date that falls within these

simulated confidence limits, which means that the dis-

continuity appears to be truly undocumented.

f. Calculation of adjustments

Steps a–e are necessary simply to identify undocu-

mented changepoints in all temperature series. In many

applications, however, station histories also may be

available, which might provide additional information

regarding possible discontinuities. When available, the

dates of documented events should be combined with

evidence of undocumented changepoints because the

impact of documented events may be too subtle for the

tests for undocumented shifts to detect. Potential ad-

justments can then be calculated for all undocumented

and documented shifts at the same time.

Adjustments are determined by calculating multiple

estimates of D using segments from neighboring series

that are homogeneous for at least 24 months before and

after the target changepoint. (When two changepoints

occur within 24 months in the target series, an adjust-

ment is made for their combined effect.) The range of

pairwise estimates for a particular step change is con-

sidered to be a measure of the confidence with which the

magnitude of the discontinuity can be estimated. As in

step e, the step model found to be most appropriate (i.e.,

M3, M4, or M5) according to the BIC can be used to

calculate a final estimate of the shift for each relevant

Dtf g segment to avoid biased estimates of D when a

relative trend is also present. At least three separate

pairwise estimates of step-change magnitude are re-

quired for each target changepoint because the distri-

bution of estimates is used to determine the significance

of the adjustment (when fewer than 3 estimates are

available, the shift is considered ‘‘unadjustable’’). More-

over, because the distribution of step-change estimates is

not necessarily symmetric, the median estimate is used

to adjust the target series.

The consistency of the pairwise estimates for D is

determined by comparing the median estimate to either

the 5th percentile (median . 0) or to the 95th percentile

(median , 0) of all estimates, subject to an initial outlier

check. Because fewer than 20 estimates may be avail-

able for any given changepoint, a multiple of the dif-

ference between the median and the first quartile (Q1)

or between the median and third quartile (Q3) serves as

an estimate of the 5th or 95th percentile, respectively. A

factor of 2.5 is used because it approximates a one-tailed

test at the 5% (a 5 0.05) significance level (assuming

independent estimates). When the median and the tail

of the distribution closest to zero are of the same sign

(i.e., median 2 Q1 3 2.5 or median 1 Q3 3 2.5), the

step change is considered to be significant, and an ad-

justment is made to the target series. This approach is

similar to the Tukey (box plot) outlier test (Tukey

1977), but allows for asymmetry in the distribution

of estimates. Alternatively, one could simply use the

median D estimate when all estimates are of the same

sign. Both approaches appear to yield comparable re-

sults.

g. Example of changepoint detection and adjustment

Application of the pairwise algorithm to the group of

series shown in Fig. 1 revealed two significant change-

points in Chula Vista maximum temperatures, both of

which were associated with documented station moves,

first on 1 January 1982 and then again on 25 April 1985.

Difference series between the pairwise-adjusted mean

monthly maximum temperatures for Chula Vista and its

FIG. 2. Histogram of the most likely changepoint date identified

by the SNHT for 10 000 series with n 5 100 and a step change D at

position 50. The magnitude of D was varied systematically from 0.2

to 4.0.
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neighbors are shown in Fig. 3, which suggests that the

algorithm has removed the major step inhomogeneities

from all series in the group.

4. Evaluation of the algorithm

To evaluate the performance of the pairwise algo-

rithm more generally, temperature series were simu-

lated under a number of trend and step-change sce-

narios. The simulations were designed to test the skill of

changepoint detection as well as to facilitate compari-

son of the results to previous investigations regarding

the use of a reference series as well as the identification

of the type of changepoint.

a. Evaluation under monthly temperature
simulations

The performance of the pairwise algorithm was first

evaluated using two different sets of simulated monthly

temperature anomalies. One set was comprised of series

with step changes, while the second set contained series

with both trend and step inhomogeneities. Both sets

consisted of 1000 groups of 21 correlated ‘‘red noise’’

series generated as in MW05. The average correlation

between each series within a group was about 0.7. For

all series the mean (m) was zero and the standard de-

viation (s) was one; the number of values in each series

(n) was equal to 1200, the equivalent of 100 yr of

monthly means.

A random number of step changes was imposed on

each series at random dates. The number of steps per

series varied symmetrically about a peak frequency of 5,

with as few as 0 and as many as 10. The magnitude of

each step change was also assigned randomly by sam-

pling from the standard normal distribution, which

means that about two-thirds of the imposed steps were

equal to one s or less. As discussed in MW05, the standard

normal distribution is a good proxy for the distribution of

known impacts to U.S. temperature series (Karl and

Williams 1987). All imposed step changes were treated as

undocumented, and 10 neighbors were identified by the

pairwise algorithm for all 21 series in the groups.

In the ‘‘monthly steps and trends’’ simulations, a trend

inhomogeneity was added to roughly 60% of the simu-

lated series. The magnitude of this trend was varied

randomly from 0.001s month21 up to about 0.18s

month21, while the trend interval varied randomly from

2 months up to the full period of record. Usually the

trend inhomogeneity did not initiate with a step change,

although steps frequently occurred randomly within the

intervals of a creeping inhomogeneity. In total, about

25% of all series segments were characterized by a trend.

Figure 4 illustrates the impact of random step-only

shifts on one group of simulated series. Prior to im-

posing step changes, the true trend in each series was

zero. After imposing shifts, the trends ranged from

27.62s century21 to 14.34s century21. The pairwise

algorithm correctly identified 34 of the 43 imposed step

changes. Of the nine shifts not identified, six had a

magnitude of less than 0.3s, which is below the sensitivity

of most tests for undocumented changepoints (DeGaetano

2006; Ducré-Robitaille et al. 2003). Furthermore, the

largest undetected changepoint (10.696s) was pre-

ceded 10 time steps earlier by another undetected

changepoint of 20.451s; that is, the two changepoints

essentially masked one another. The overall effective-

ness of the pairwise adjustments is evident in Fig. 5,

which depicts the 10 series after homogenization by the

pairwise algorithm. Note that changepoints have been

adjusted relative to the latest mean level in each series,

the convention in climate data homogenization. In

general, the adjusted series all have trends much closer

to the true ‘‘climate’’ trend of zero.

Table 2 more generally summarizes the detection skill

of the pairwise approach for both the step-only and the

step-/trend-change scenarios. The hit rate (the ratio of

the number of changepoints correctly identified relative

to the total number imposed) is roughly 67% for both

scenarios. The false-alarm rate (FAR; the ratio of

falsely detected changepoints to the total number de-

tected) is 6.77% for the step-only scenario (only slightly

higher than the expected type-I error rate at the a 5

0.05 significance level) and 19.65% for the step/trend

scenario. The increase in false alarms when trend in-

homogeneities are present occurs for two main reasons.

First, the beginning or end of a trend inhomogeneity is

often identified as a step change by the pairwise algo-

rithm. Second, short interval trends of about 24 months

or less tend to be virtually indistinguishable from step

changes and are therefore adjusted as an abrupt change.

Indeed, the largest magnitude false alarms under the

steps-and-trend inhomogeneity simulations result from

short interval, but large magnitude trend inhomogene-

ities that are approximated by a step change.

Histograms indicating the magnitude of hits, misses,

and false alarms for the step-only and step/trend simu-

lations are shown in Figs. 6 and 7, respectively. In both

cases, changes in excess of 0.5s are readily detected, and

most misses are generally less than 0.5s. The number of

false alarms is also generally small, suggesting that they

will have little impact on the homogenized trends for

the simulated series.

Regarding the series trends, two measures of error are

provided in Table 2. The first is the root-mean-square

error (RMSE) for a trend calculated using the unad-

justed series and the second is the RMSE for trends

calculated using the adjusted series. As shown in the
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FIG. 3. As in Fig. 1, following adjustments by the pairwise algorithm.
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table, the pairwise homogenization process greatly re-

duces the error associated with the calculation of the

true background climate trend. Table 2 also indicates

that the RMSE for changepoint estimates in series with

trends is about as good as in the series with no trend

inhomogeneities, which suggests that the model identi-

fication is reasonably successful at identifying step

changes that occur within local trends. A more thorough

assessment of changepoint-type identification is pro-

vided in section 4c.

b. Pairwise versus reference series changepoint
detection skill

The use of a reference series is the most widely

employed approach to relative changepoint detection,

and MW05 evaluated the implications of such an ap-

proach for undocumented changepoint detection. The

pairwise approach was therefore evaluated using the

same simulations and scenarios as in MW05 to directly

compare its skill of undocumented changepoint detec-

tion against the reference series approach. Table 3 de-

picts the seven scenarios evaluated in MW05. Each case

was comprised of 1000 groups of six correlated series

(one target and five neighbors) with n 5 100 values. Of

the three reference series formulations evaluated by

MW05, the one based on a correlated weighted average

of the five neighbors (Alexandersson and Moberg 1997)

is compared here. As in the pairwise algorithm, the

SNHT was used to test the target-minus-weighted-

average reference Dtf g series (a 5 0.05). All change-

points detected in the Dtf g series were attributed to the

target series to test the consequences of assuming ref-

erence series homogeneity.

Table 4 summarizes the pairwise and reference series

detection skill for the MW05 target series. Two statistics

are presented for each case: the FAR (previously de-

scribed) and the correct changepoint (CRC) power

statistic (R07), which is the percentage of time that ei-

ther (a) the changepoint date in the target series was

selected within 62 time steps of the correct date or (b)

the target was correctly identified as homogeneous.

Basically, the CRC is synonymous with hit rate except

that it also credits the number of times that the target

series was successfully identified as homogeneous.

In general, the pairwise algorithm has a much higher

success rate in identifying homogeneous target series

than the reference series approach as indicated by the

higher CRC percentages for cases 1, 3, and 5. This is

true when the neighbor series are themselves homoge-

neous as in cases 1 and 5, but especially when all the

neighbors have changepoints as in case 3, which cause

numerous inhomogeneities in the reference series.

More generally, Table 4 indicates the degree to which

FIG. 4. ‘‘Annual’’ averages of simulated monthly series with a

random number of changepoints imposed at random times and

with random magnitudes. The true trend in all 10 correlated series

is zero. Simulations are treated as beginning in January 1901 and

ending December 2000.

FIG. 5. As in Fig. 4, after homogenization by the pairwise

algorithm.

TABLE 2. Changepoint detection and magnitude estimation skill for monthly temperature. RMSE of D and b expressed in standardized

units (s). The RMSE of b is calculated with respect to the true trend of zero.

Case study HR (%) FAR (%)

RMSE of

D (s)

RMSE of b for

unadjusted values (s)

RMSE of b for

adjusted values (s)

Monthly data with step changes 67.11 6.77 0.284 2.455 0.401

Monthly data with step and trend changes 67.56 19.65 0.313 2.899 0.757
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the pairwise approach limits the number of false alarms

whenever the neighboring series are impacted by un-

documented changepoints as evidenced by the low FAR

for cases 4 and 6 relative to the reference series ap-

proach.

As shown in Fig. 8, the pairwise hit rate meets or

exceeds that of the reference series approach when

there are at least seven viable neighbors available at all

times during a target station’s history. (This is the

foundation for the number of neighbors selected for

comparison as described in section 3a.) The relatively

steep increase in the power of detection as the number

of comparisons increases illustrates an advantage of

pairwise testing, namely, that there are multiple chances

to detect a changepoint in any particular target series. If

the SNHT misses a changepoint in one target–neighbor

difference series, or if it misidentifies the date, there are

a number of additional chances to test for the same

undocumented break. The chances are not completely

independent, however, because any two Dtf g series

with a common target will have an expected correlation

of 0.5 (Menne and Duchon 2001). Moreover, the power

of pairwise detection can be further improved by in-

creasing the sample size between changepoints, which

can be achieved by testing serial monthly values rather

than annual or seasonal averages. This accounts for the

higher hit rate in the ‘‘monthly’’ simulations, that is,

67% (Table 2) compared to the rate of a little less than

50% shown in Fig. 8 when 10 neighbors are available.

c. Skill in identifying the type of changepoint

The magnitude of a step change will not be accurately

estimated if the type of changepoint has been mis-

identified. Consequently, the skill of the pairwise algo-

rithm in classifying changepoint type was assessed for

the range of models in Table 1. As in section 4b, a set of

1000 groups of target and neighbor series with n 5 100

values were used for each scenario. In this case different

magnitudes of trend and step parameters, that is, c, D, b,

b1, and b2, were imposed on the target series as shown in

Table 5; the five neighbor series, in contrast, were al-

ways homogeneous (M1). The magnitudes of the pa-

rameters imposed on the target series were the same as

those used by R07, although only a portion of the results

are summarized here.

A comparison of the CRC’s in Table 5 for the D 5

1s simulations indicates that the pairwise algorithm

correctly identified more than 85% of these step changes

regardless of whether the target series followed M3, M4,

or M5. Moreover, the algorithm also correctly identified

more than 85% of the M2 (constant trend) target series

as homogeneous (no steps). On the other hand, there is

FIG. 6. Changepoint detection results for the monthly ‘‘step only’’

simulations.

FIG. 7. Changepoint detection results for the monthly steps and

trends simulations.

TABLE 3. Number of changepoints imposed on each target and/

or neighbor series for various case studies. The cases comprise

1000 simulations of six correlated series with n 5 100 as described

in MW05.

Scenario

Number of imposed changepoints

Target series Each neighbor series

Case 1 (null case) 0 0

Case 2 2 0

Case 3 0 2

Case 4 2 2

Case 5 (null case with

missing values)

0 0

Case 6 0–6* 0–6*

Case 7 6** 0

* The number of changepoints in each series is symmetrically

distributed about a peak frequency of 3.

** Changepoint position and magnitude are fixed as in Caussinus

and Mestre (2004): 12.0 at c 5 20, 12.0 at c 5 40, 22.0 at c 5

50, 22.0 at c 5 70, 12.0 at c 5 75, and 12.0 at c 5 85.
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more variability in the skill of classifying the type of

changepoint as indicated by the correct type percent-

ages shown in bold. The percentages indicate that the

algorithm had somewhat less success in classifying M4-

and M5-type changepoints relative to M3-type change-

points and series that follow M2.

Under the M2 scenarios, the pairwise algorithm cor-

rectly classified more than 85% of the Dtf g series when

b was greater than or equal to 0.01 (a slope yielding a

change of 1s in 100 time steps), but less than 50% when

b 5 0.005 (a change of 0.5s in 100 time steps). The

reason for the difference is that the BIC does not always

distinguish a sloped line from a flat line when b is small.

This kind of misclassification, however, does not impact

the CRC because there is no step change assigned to the

target. On the other hand, when b is larger, the SNHT

tends to partition the Dtf g trend into one or more step-

type changes. The BIC correctly reclassifies most of

these breaks as M2, but also cannot always distinguish a

trend (M2) from a step change (M3, M4, or M5). Con-

sequently, the pairwise algorithm classifies only 91% of

M2 target series as homogeneous (no step) when b 5

0.01 and 86.9% when b 5 0.02. The impact of this type

of misclassification is to inadvertently remove some of

the unique target series trend as a step adjustment,

thereby bringing the target series more in line with the

regional background climate trend captured by the

neighbors (DeGaetano 2006; Pielke et al. 2007).

For target series under M3 (step change with no

trend), the overall power of detection is a function of

the magnitude of the step, as shown in previous inves-

tigations (e.g., DeGaetano 2006). In the pairwise algo-

rithm, most (. 88%) of the Dtf g series with a step

change of 1s or greater were correctly identified as M3,

and the CRC exceeds 90% in such cases. On the other

hand, many (about 45%) of the 0.5s magnitude step

changes are misclassified as a trend change (M2).

When the target series follows M4 (step change within

a constant trend), the pairwise CRC varies between

85% and 90% for the 1s step changes, close the M3

rate. However, in the M4 simulations, the algorithm

frequently (about 80% of the time when b 5 0.005)

misclassifies the Dtf g series as M3, especially when b is

small. This type of misclassification also leads to a bi-

ased estimate of the magnitude of the jump by aliasing

the unique target trend on to the estimate of the step

change. Much like a false alarm when the target follows

M2, the biased estimate would bring the adjusted target

more in agreement with the background trend captured

by the neighbors (DeGaetano 2006; Pielke et al. 2007).

Under M5, the target series has a step change within a

trend change, but there is also a change in trend coin-

cident with the step. In this scenario, the CRCs are

comparable to the M4 simulations, but in this case, the

pairwise algorithm tended to misclassify the Dtf g series

as M3 or M4 in roughly equal proportions. Conse-

quently, some of the target series trends would be

TABLE 4. Skill scores from the pairwise homogenization algorithm for the case studies described in Table 3. The subscripts ‘‘pw’’ and

‘‘ref’’ refer to the pairwise and reference series approaches, respectively.

Case study (and scenario description) CRCpw (%) FARpw (%) CRCref (%) FARref (%)

Case 1 (homogeneous target and neighbor series) 99.5 100.0 88.8 100.0

Case 2 (two random changepoints in target;

homogeneous neighbor series)

44.0 5.6 55.4 21.0

Case 3 (homogeneous target series; two random

changepoints in each neighbor series)

95.2 100.0 0.0 100.0

Case 4 (two random changepoints in all series) 37.3 8.5 50.3 46.0

Case 5 (homogeneous target and neighbor series

with missing values)

100.0 Undefined (zero

false alarms)

87.2 100.0

Case 6 (up to six changepoints in all series) 31.6 7.0 45.4 41.0

Cse 7 (six changepoints in target [D52s];

homogeneous neighbors)

84.6 1.1 70.4 6.0

FIG. 8. Relationship between the hit rate (HR) and FAR for

changepoints attributed to the target series as a function of the

number of neighbors used to compute a composite reference series

or in pairwise comparisons. Results are based on 1000 groups of

series (n 5 100) simulated under case 6 (between 0 and 6 random

changepoints added to the target and all neighbor series).
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aliased onto the estimate of the M5 step changes, as in

the case of the M4 target series simulations.

Overall, the results in Table 5 are consistent with the

changepoint-type identification capabilities of the gen-

eralized methods investigated by R07, namely, that it is

more challenging to classify M4- and M5-type change-

points. As shown in R07, the lower identification skill

occurs even when changepoint tests specifically de-

signed for these types of change are used, that is, Wang

(2003) for M4 and Lund and Reeves (2002) for M5.

Nevertheless, from Table 5 and results (not shown)

based on directly testing a target series as in R07, it

appears that the pairwise approach (SNHT plus BIC)

has comparable skill at model identification compared

to the methods evaluated by R07. The advantage of the

pairwise approach is that the SNHT’s superior power of

detection is exploited.

The skill of identifying changepoint type, like the

power of detection, can also be improved by increasing

the sample size of the test series, that is, by testing serial

monthly series. For example, the percentage of cor-

rectly identified M4 difference series is about 70% at

b 5 0.02 when n 5 240 and c 5 120 versus 50% for n 5

100 and c 5 50. Similarly, when b1 5 0.01 and b2 5 0.03

under M5, the percentage of series correctly identified

increases to 75% for n 5 240 versus about 50% for n 5

100. In addition, the skill of changepoint detection and

identification increases with increasing correlation be-

tween series, which reduces the variance of the Dtf g
series. As noted by DeGaetano (2006), the correlation

between temperature series in the United States is

typically higher than in the simulations used here.

5. Application to U.S. temperature series

A number of recent studies have focused on the im-

pact of land use change on the temperature record (e.g.,

Peterson and Owen 2005; Kalnay et al. 2006; Parker

2006; Pielke et al. 2007), yet no general assessment

of the frequency of the various types of changepoints

in observed temperature series has been conducted.

For this reason, the pairwise algorithm was applied to

monthly temperature series from the Coop Network in

order to assess relative frequency of the type of inho-

mogeneity (including local trends) in U.S. temperature

records. Monthly mean maximum and minimum values

from over 7000 stations covering the period from 1895

to 2006 were used, although the specific period of record

varied from station to station. The nature of the shifts

for a commonly used subset of the Coop network, that

is, the U.S. Historical Climatology Network (HCN;

Easterling et al. 1996) was examined in detail.

An analysis of the more than 100 000 Dtf g series

segments used to calculate the shift magnitudes for

HCN temperature series indicates that about 50% of

the step changes follow M3 (step change with no trend),

while approximately 40% follow M5 (step change ac-

companied by a trend change) and about 10% follow

M4 (step change within a general trend). While these

percentages were calculated on a segment-by-segment

basis, the models M4 and M5 also minimized the BIC

statistic about 50% of the time when calculated across

each series’ full period of record (shown in Table 7). In

other words, the trend models appear to be a better fit

about 50% of the time even for observed Dtf g that are

generally decades long and incorporate shifts identified

in both HCN targets and their Coop neighbors (and are

thus highly penalized by the BIC).

To further evaluate the pairwise adjustments for

these types of shifts, the adjusted series were also

manually inspected. In brief, this entailed graphing each

HCN series and its Coop neighbors as in Fig. 3, and then

subjectively deeming the adjusted series as plausible or

implausible. This subjective evaluation revealed that

roughly 15%–20% of the adjusted series exhibited

TABLE 5. Changepoint detection and model identification re-

sults (%) for 1000 sets of five target–neighbor difference ( Dtf g)
series (n 5 100). Parameters were added as indicated to the target

series and c 5 50 for the target simulated under M3, M4, and M5.

The neighbor series always followed M1 (constant mean with no

breaks). CRC refers to the pairwise algorithm’s detection results

for the target series. The percentage of Dtf g identified correctly is

given in bold.

Target series follows M2

b M1 M2 M3 M4 M5 CRC

0.005 51.25 44.36 3.86 0.24 0.30 95.70

0.010 2.45 88.23 7.30 0.72 1.31 91.00

0.020 0.55 85.75 3.48 4.56 5.67 86.90

Target series follows M3

D M1 M2 M3 M4 M5 CRC

0.5 11.71 45.16 39.03 1.66 2.44 30.30

1.0 0.06 4.83 88.59 1.82 4.70 90.90

2.0 0.00 0.10 93.21 1.85 4.85 99.90

Target series follows M4

D b M1 M2 M3 M4 M5 CRC

1.0 0.005 0.04 6.56 80.08 5.24 8.08 89.30

1.0 0.010 0.06 7.32 51.07 24.56 16.99 87.90

1.0 0.020 0.05 7.46 19.75 52.87 19.87 85.50

Target series follows M5

D b1 b2 M1 M2 M3 M4 M5 CRC

1.0 0.010 0.015 0.11 8.16 34.84 33.17 23.72 87.11

1.0 0.010 0.020 0.07 8.45 25.17 33.51 32.79 86.20

1.0 0.010 0.030 0.07 7.47 19.34 23.22 49.91 85.70
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FIG. 9. Mean monthly minimum temperature anomalies (8C) for Cheesman (target) and differences between monthly

temperature anomalies at Cheesman and nine neighboring series (T-N1 to T-N9).
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physically unrealistic trends that were clearly inconsis-

tent with neighboring stations. The minimum tempera-

ture series at Cheesman, Colorado, is an extreme ex-

ample. As shown in Fig. 9, a sawtooth pattern is evident

in the Dtf g series formed between the Cheesman series

and its neighbors. The increasing difference between

Cheesman and the surrounding stations (particularly

after 1980) sometimes exceeded 48C in 5 yr, a relative

change that was easily classified as M5 (step change with

a trend change) by the pairwise algorithm. The conse-

quence of adjusting the series using M5 (i.e., removal of

the step and retention of the trend) is shown in Fig. 10.

The result is clearly unrealistic.

Given that preserving local trends (i.e., trend inho-

mogeneities) can often result in undesirable adjusted

series, the pairwise algorithm was modified to employ

the more commonly used M3 adjustment for all step

changes (DeGaetano 2006). (Note that M3, M4, and M5

were still employed to detect step changes.) The impact

of the M3-only approach on the Cheesman series is also

shown in Fig. 10. Although the sawtooth signature re-

mains in the adjusted data, the trend at Cheesman using

the M3 adjustments is clearly in sync with the average of

trends in surrounding series. A similar visual inspection

of all HCN temperature series suggests that an M3-only

adjustment approach works well for all situations in

which there is evidence of a step change because any

associated trend inhomogeneity is consistently aliased

onto estimates of the step change in a way that favors

the background climate signal.

The same result occurs when M3 alone is used to

adjust the simulated series in the ‘‘monthly steps and

trends’’ simulations, as shown in Table 6. From a com-

parison of the RMSE for the adjusted trends in Tables 2

and 6, it is evident that using M3 for all step-change

adjustments removes the impact of most trend inho-

mogeneities because the error for the adjusted trends is

roughly the same for the step-only and steps and trends

simulations. Still, while the temperature series that re-

sult using the M3-only adjustments arguably approxi-

mate the best theoretical climate series for each loca-

tion, the local trend signal is nevertheless aliased out of

the original series, thus limiting the use of the adjusted

series in some attribution studies of observed temper-

ature change. Ultimately, a better solution would be to

remove trend inhomogeneities via trend adjustments

and step inhomogeneities via step adjustments. Unfor-

tunately, unlike step changes that occur at the same

time within a group of target/neighbor Dtf g series, a

trend inhomogeneity at a given target station may begin

and end at different times with respect to each of its

neighbors. This makes identifying the true interval of

trend inhomogeneity more difficult than detecting step

changes, and is beyond the scope of this paper.

In any case, another reason to use only M3-type ad-

justments is that it appears that at least some apparent

trends may in fact be artifacts of unidentified step

changes. This conclusion comes from an evaluation of

the capability of the BIC statistic to determine the true

dimensions of the simulated target-minus-neighbor pe-

riod of record Dtf g series when the shifts are treated as

wholly undocumented (and identified by the pairwise

algorithm) versus when the shift times are known per-

fectly. Table 7 summarizes the frequency that each

model minimized the BIC statistic in the 420 000 unique

Dtf g series that comprise each set of monthly simula-

tions. Based on these results, it appears that M5 rarely

minimizes the BIC when there are no relative trends in

the simulated data, but M4 is identified as the ‘‘best’’

model in over 16% of cases when the shifts are treated

as undocumented. Conversely, when there is perfect

FIG. 10. Differences between annual minimum temperatures at

Cheezman and 20 neighboring stations, and following adjustments

for step changes using the most appropriate model determined by

the pairwise algorithm (M3, M4, or M5) and using M3 only.

TABLE 6. Changepoint detection and magnitude estimation skill for monthly temperature series using a constant mean model (M3) for all

step change adjustments regardless of the identified type.

Case study HR(%) FAR (%)

RMSE of

D (s)

RMSE of b for

unadjusted values (s)

RMSE of b for

adjusted values (s)

Monthly data with step changes 67.22 6.77 0.291 2.455 0.401

Monthly data with step and trend changes 67.58 20.14 0.349 2.899 0.488
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knowledge of the timing of all shifts no matter how

small, M4 rarely minimizes the BIC when only shifts

occur (in this case M5 was selected as the ‘‘best’’ model

in only 2 of 420 000 cases).

The sloped models more frequently minimize the BIC

in the steps and trends scenarios than in the steps-only

simulations. Given that in this case approximately 63%

of the full Dtf g series have a trend segment somewhere

in the period of record, Table 7 suggests that the fre-

quency of M3-type models is nevertheless under-

estimated when shifts are treated as undocumented (be-

cause of unidentified step changes). However, when

there is perfect knowledge of all shifts in the monthly

steps and trends simulations, the models minimize the

BIC in way that suggests that the frequency of M3 so-

lutions is approximately correct (although M4 is se-

lected too often at the expense of M5). Based on these

results, we conclude that, while perhaps prevalent, the

frequency of apparent trend inhomogeneities in the

HCN is inflated by the presence of unidentified (i.e.,

small and perhaps unidentifiable) step changes.

6. Conclusions

Our evaluation of the pairwise algorithm suggests

that it is a robust, reliable, and accurate approach to

detecting step-type inhomogeneities under a wide va-

riety of circumstances. Relative to the more traditional

use of a climate reference series, a pairwise approach

to undocumented changepoint detection reduces the

number of false alarms in general and is particularly

successful at identifying homogeneous segments. In

addition, unlike the reference approach, there are no

requirements for a group of series to have a common

base period. As a result, the estimation of step-change

magnitude is not confined to the shortest homogeneous

interval within a group of neighboring series. In this

regard, the pairwise method is similar to the graph

theory approach used by Christy et al. (2006) except

that the pairwise algorithm makes no attempt to com-

pare climate series that do not overlap in time.

Moreover, because each climate series is paired with a

unique set of neighboring series in the algorithm, it is

possible to determine whether more than one nearby

station series shares a particular shift date because both

stations will have been implicated multiple times on or

about the same date. This property of the algorithm is

important when a widespread and near simultaneous

change in observation practice occurs in a network. Such

a situation arose in the U.S. Cooperative Network when

liquid-in-glass thermometers were replaced with elec-

tronic thermistors at roughly two-thirds of sites during

the mid- and late 1980s (Quayle et al. 1991; Hubbard and

Lin 2006). Of course, if a change is implemented on ex-

actly the same date at all stations, relative homogeneity

testing will not be effective.

Results from applying the pairwise algorithm to ob-

served temperature series suggest that while there is

evidence of relative trends between series in the U.S.

surface temperature record, some apparent trends may

be an artifact of unidentified, small shifts. Although

there is some interest in preserving such trend inho-

mogeneities for land use/land change impact studies

(e.g., Pielke et al. 2007), the results of this analysis in-

dicate that physically implausible trends can result when

apparent trend inhomogeneities are preserved. On the

other hand, if the goal is to produce an accurate esti-

mate of the background climate signal, all identified

shifts can nevertheless be removed using the step-only

model. While this necessarily leads to the aliasing of any

associated trend inhomogeneity onto the estimate of the

step change, a reliable estimate of the background cli-

mate signal is obtained.

Finally, we reiterate that the pairwise algorithm was

designed to solve the practical problem of adjusting tem-

perature series to remove the impacts of artificial changes

in a holistic way. Because the algorithm is modular, it is

possible to enhance its various components. For exam-

ple, shifts in the target-minus-neighbor difference series

might be resolved using optimal methods (e.g., Caussinus

and Mestre 2004) and/or by incorporating tests for

periodicity in the serial monthly difference series. The

TABLE 7. Frequency (%) that the model minimizes the BIC statistic for the period of record difference series formed between all target

and neighbor series.

Scenario

Model

M1 M2 M3 M4 M5

Observed HCN monthly temperatures (pairwise identification of steps) 5.12 10.06 34.18 25.29 25.35

Monthly step-only simulations (pairwise identification of steps) 0.45 0.27 78.58 16.71 3.99

Monthly steps-only simulations (perfect knowledge of steps) 0.45 0.34 96.24 2.96 0.00

Monthly steps and trends simulations (pairwise identification of steps) 0.09 0.27 20.47 17.21 61.96

Monthly steps and trends simulations (perfect knowledge of steps) 0.09 0.41 41.79 21.72 35.99
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latter may be important because the monthly adjust-

ments calculated by the pairwise algorithm are currently

constant for all months. Although the increased sample

size afforded by testing serial monthly data likely over-

whelms any benefit to testing seasonal values separately

(cf. Karl and Williams 1987; Begert et al. 2005; Brunet

et al. 2007), there is evidence that bias changes often have

impacts that vary seasonally and/or synoptically (Trewin

and Trevitt 1996; Guttman and Baker 1996). As shown

by Della-Marta and Wanner (2006), it is possible to es-

timate the differential impacts indirectly by evaluating

the magnitude of change as a function of the frequency

distribution of daily temperatures. Such a method re-

quires knowledge of the timing of shifts as a starting

point, which can be provided by the pairwise results.
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